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1 Introduction

Some common applications of adaptive filters




Applications contemplated

a. Echo cancelling.
b. Voice coding.
c. Inverse filtering (equalization).

d. Interference cancelling (active noise control, detection).
Aspects related to identification and control

1. Persistent excitation is important for robustness. Lack of persistent
excitation leads to drift and bursting in feedback adaptive systems.

2. General algorithms using prediction error correlate a (filtered) version
of the prediction error with a (filtered) version of the regressor.

3. A constant convergence (or gain) factor related to the updating algo-
rithm leads to a bounded, but finite, asymptotic variance in the param-
eter estimation (misadjustement).



1.0.1 Basic recursive identifier

Consider the model y(n) and the identifier y(n) (FIR! only to introduce) as
follows

y(n) = ébix(n — 1)
i) = S hlmetn = i

then the prediction error can be written as

e(n) = yn)+v(n)—yn)
= (b(n) - b(n))" x(n) + v(n)
b

S (m)a(n) + v(n)
such that the LMS algorithm is defined by

b(n+ 1) = b(n) + pw(n)e(n)
v(n)
v(n) y(n)
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Figure 1: Basic recursive identifier



1.1 System identification: Echo Cancelling

Relevant aspects of the application

e Useful in typical long distance telephone loops. Essential in full duplex
DSL.

e The hybrid design can not achieve echo attenuation lower than 6 dB.

e Double talk situation need to be detected. This can be interpreted in the
figure by f(n) (the far-end signal) similar to v(n) (the near-end signal)
in order that the identifier works suitably (this happens in practice if

x(n) — (y(n) +v(n)) < 6 dB).

Formulation similar to the basic recursive identifier (except when feedback
exist!).
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Figure 2: Echo cancelling



1.2 Prediction: Speech coding
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Figure 3: Speech coding application

e The signal model is: s(n) = w(n)+ X, bis(n — ).
e The predictor is: Br(q) = =N, birg™

e The transfer function between s(n) and e(n) will be: 1 — BT(q).

e The transfer function between e(n) and $(n) will be:

In the transmitter:

1-Bg(q)"



By replacing the signal model s(n) in (2) and using (1),

e(n) = wn)+ Y bile(n—1) —vgn—1i)+ar(n —i)] +vo(n)+ 2r(n)
= w(n)+ > bile(n—1i)—vg(n—1)
+ir(n — )]+ vo(n) + 3 birle(n — i) + &r(n — i)
= Y[bi = bir()][e(n — i) + &r(n — i)]
+w(n) +vo(n) = X bing(n — i)

z(n) e(n)+ &p
y(n)+v(n) s(n) + vg(n)

y(n) rr(n)

v(n) w(n) 4+ vo(n)[1 — Bir(q)]

Then, the LMS algorithm related to this problem will be:

bi(n +1) = bi(n) + pe(n)[e(n — i) + &(n — )]

When ve(n) = 0, this equation is useful for both transmitter and receiver.
Since in general ve(n) # 0, leakage is introduced in the receiver, i.e.,

bi(n+1) = (1= Ni(n) + pe(n)le(n — i) + (n - i)



1.3 Inverse filtering: Linear and Decision feedback equalization

s(n) | channel MOM equalizer | y(n) =d€cis‘i0n
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Figure 4: Linear equalization

In this case

y(n) = Zfz( Je(n =) x(n) =wn)+vn)

With an AR model of the channel C'(q) = % such that s(n) = =X byw(n —
i), i.e., a minimum phase stable channel, then
N b
w(n) = sn) _ S “w(n — i)
bo bo

=1

Using training

() = sln) = yln) = 3 b= ) = 3 fiw)a(n =
= (b= fin)en = i) = X bl =



This can be related to the basic identifier as shown in the in the following
table

b | F)
v(n) | =5y biv(n — i)

Note: since in general the noise term is not white (correlated by
the channel parameters), the LMS parameter estimation is biased.

With a FIR model (a truncated version) of the channel, i.e., C(g) such
that

N
w(n)=> c¢s(n—1)
i=0
then x(n) = XN, cis(n— i) +v(n).
The equalizer is described by
N
y(n) = ;)flx(n — 1)
The channel - equalizer combination given by
h = [hq. ..., han]"
(convolution of C'(¢) and F(q) ) can be written as

h=Af
co 0 0 |
8] &) 0
8] Co
where A = ' ' ' (2N +1) x (N+1) and f = [fo, ..., fv]?.
CON+1 :
0
CON+1
0 conqg |

With a delay of 6 units, A" = [0...010...0]".

Given A, the equation above can be solved in the mean square sense (pseu-
doinverse).



Problem exists in the extreme values (maximums) of the frequency
response of the equalizer where the channel has a transfer function
with small values.

Then, if channel noise exist, the noise power is amplified
at the equalizer output.

A possible reduction of noise sensitivity is obtained considering the re-use of
past detected symbols, i.e., Decision Feedback Equalization
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Figure 5: Decision feedback equalization

Consider the channel divided in

® a precursor response: Z?:_(N_l) ci(n) (equalized by F(z)) the interfer-
ence to be equalized in future symbols,

e a poscursor response: Y M, ci(n) (equalized by B(z)) the interference
remaining in correct detected symbols.

In such a way that
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If the detected symbols are correct (or if a training period exist): §(n) = s(n),
is easy to see that:

s'(n) = F(g)(Clg)s(n) +v(n)) = B(q)s(n)
= (F(¢)C(q) = B(g))s(n) + F(q))v(n)
Note that, for a given channel transfer function, noise not intervenes in the

first term. Then the poscursor filter B(q) can be obtained as a function of
the precursor filter.

Because we work with a truncated version of the channel C'(¢) we can not
obtain a straightforward relationship to the basic recursive identifier.
But, considering that the error can be written as

e(n) = s(n)—s'(n) =5(n) - [(F(q)Clq) — Blg))s(n)] + F(q)v(n)]

is not hard to see that the associated LMS algorithm has the form

filn+1) = filn)+ ue(n)[k:_%:v_l) fr(n)ae(n —k —i) — é bp(n)s(n — k —i)]
1) = el fuCnletn— k=) = 3 bn)sn — k=)

fori=—(N—-1),.0and j =1,.., M.
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Another alternative is the independent channel identification and their
utilization in equalization.
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Figure 6: Independent channel identification
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1.4 Interference cancelling

1.4.1 Active noise control

Many different configuration exist for Active noise control. A suitable one is
the following

Cem) sy fesdn)

Figure 7: Active noise control: feedfoward (broadband) system

e z(n): noise source (primary source, microphone).

e y(n) (secondary source, loudspeaker).

ef(n) error source (monitor microphone).

z): noise transfer function.

z) adaptive noise controller.

F
C(z) acoustic system (i.e.: a duct).

o B(

S

(z) transducer transfer function.
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Assuming F(z) = 1, and in order to cope with the unobservable error
e(n), it is necessary to work with a Filtered x-LMS algorithm,

bi(n +1) = bi(n) 4 pes(n)ap(n — i)l

where x;(n) = g(q)x(n), where S(¢) is an estimate of S(q).
Since in this case,

es(n) = S(g)e(n) = S(Q)[C(q)x(n) — Blg)a(n)
= S(IZ (e = bilm)a(n - i)
= b (n)ay(n)

where B(n) = (¢ — b(n)). Then, the basic recursive identifier is related by

v(n) | 0 (noise is the primary source)
v(n) ry(n)

e(n) ¢s(1)
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1.4.2 Adaptive notch filters
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Figure 8: Adaptive line enhancer: a) FIR filter, b) IIR notch filter.

In this case the requirement is to improve the signal-to noise ratio for the
input signal x(n), described by

x(n) = ¢, sin(w,n + ¢,) + v(n)

where ¢, is the constant amplitude of the sinusoid of unknown frequency w,,
and ¢, is its phase.



15

This is a classical detection problem whose optimum solution (maximum
signal-to-noise ratio) to recover a real signal h(n) is given by the associated
matched filter, h(—n). In this case a discrete sinusoid.

e The adaptive FIR filter solution, B(q) = =¥, b;(n)q™", is obviously only
a finite memory approximation of the matched filter. The delay z7°
allows to work with several cycles.

e The specific sinusoid frequency w, can be obtained using an FFT on the
estimated impulse response coefficients, b;(n).

e As could be expected, high N improves the signal-to-noise ratio of the
estimate.

e The main problem, without regarding computational complexity, is the
occurrence of false noise-induced peaks in the frequency response.
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e Consider now the variance E[y*(n)] of the output signal y(n) in the
second configuration, that can be written as

Ely*(n)] = c; [H(e™)" + Elv*(n)]

0 w=w,andw = —w,

if H(e/?) = { | Y , L.e., an ideal notch filter, we

obtain

9 [ EA(n)] w = w,
Ely(n) = { 2+ E[v*(n)] Yw

e then we can recover the sinusoid using an ideal bandpass filter given by

1 w=w,andw = —w,

G =1 - e =)
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e The adaptive IIR filter solution contemplates the use of a practical notch
filter with, for example, the following transfer function:

1+az 14+ 272
H —
(2) l4+arz=1+r22-2

where: 0 < r < 11is a constant, and a is related to the sinusoid frequency
w, by w, = arcos(—a/2), provided —2 < a < 2.

e It is not hard to see that the frequency response of H(z) is a notch filter
with notch bandwidth decreasing when r — 1.

e A basic recursive identifier is not trivial in this case, mainly because
the adaptive filter is ITR in this case. Anyway, the algorithm to be
considered has the familiar form

a(n+1) = a(n) = uy(n)V,(n)

where V, = %‘f((:)) and obviously a(n) is the parameter to be updated.

e Straightforward calculations show that

B 1 —rq_2
va(n) - (1 o 7“) ((1 +ar q—l 4 7“2(]_2)2) y(n - 1)

e Finally the relationship with the basic recursive identifier is given by

v(n) | 0 (noise exist at input)
x(n) Va(n)
e(n) y(n)
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1.5 Overview and objectives

An outline of the proposed contents is the following:

1. Adaptive FIR filters. Some algorithms and their limitations.
2. Adaptive IIR filters. Motivation from system identification theory.

3. Some useful tools. Concepts on Approximation and Stability theory.

(a) Considerations on time variant linear systems.

(b) ODE, conditions for the association, Liapunov function. Stationary
points: theorems.

(¢) Approximation concepts: Orthonormal space decomposition of Lo
(interpolation), relationship with Hankel norm.

(d) Stability concepts: Stability of a quasi-time-invariant linear system.
Stability of a particular non linear system: passivity and hypersta-
bility.

4. MSOE minimization and related algorithms.

5. The Equation Error perspective. An IIR extension of the FIR adaptive
filter.

6. Alternative criteria I: HARF', an stable but incomplete solution.

7. Alternative criteria II: Steiglitz-McBride, the closest approximation to
the global minimum.

8. A brief discussion of adaptive IIR filters.



