

DEPARTAMENTO DE INGENIERIA ELECTRICA UNIVERSIDAD NACIONAL DEL SUR

Adaptive Signal Processing: IIR Filtering

Juan Cousseau

1998

1 Introduction

Some common applications of adaptive filters

Applications contemplated

- a. Echo cancelling.
- b. Voice coding.
- c. Inverse filtering (equalization).
- d. Interference cancelling (active noise control, detection).

Aspects related to identification and control

- 1. Persistent excitation is important for robustness. Lack of persistent excitation leads to *drift* and *bursting* in feedback adaptive systems.
- 2. General algorithms using prediction error correlate a (filtered) version of the prediction error with a (filtered) version of the regressor.
- 3. A constant convergence (or gain) factor related to the updating algorithm leads to a bounded, but finite, asymptotic variance in the parameter estimation (misadjustement).

1.0.1 Basic recursive identifier

Consider the model y(n) and the identifier $\hat{y}(n)$ (FIR! only to introduce) as follows

$$y(n) = \sum_{i=0}^{N} b_i x(n-i)$$
$$\hat{y}(n) = \sum_{i=0}^{N} \hat{b}_i(n) x(n-i)$$

then the prediction error can be written as

$$e(n) = y(n) + \nu(n) - \hat{y}(n)$$

$$= (\boldsymbol{b}(n) - \hat{\boldsymbol{b}}(n))^T \boldsymbol{x}(n) + \nu(n)$$

$$= \tilde{\boldsymbol{b}}^T(n) \boldsymbol{x}(n) + \nu(n)$$

such that the LMS algorithm is defined by

$$\hat{\boldsymbol{b}}(n+1) = \hat{\boldsymbol{b}}(n) + \mu \boldsymbol{x}(n)e(n)$$

Figure 1: Basic recursive identifier

1.1 System identification: Echo Cancelling

Relevant aspects of the application

- Useful in typical long distance telephone loops. Essential in full duplex DSL.
- The hybrid design can not achieve echo attenuation lower than 6 dB.
- Double talk situation need to be detected. This can be interpreted in the figure by f(n) (the far-end signal) similar to $\nu(n)$ (the near-end signal) in order that the identifier works suitably (this happens in practice if $x(n) (y(n) + \nu(n)) < 6 \text{ dB}$).

Formulation similar to the basic recursive identifier (except when feedback exist!).

Figure 2: Echo cancelling

1.2 Prediction: Speech coding

Figure 3: Speech coding application

- The signal model is: $s(n) = w(n) + \sum_{i=1}^{N} b_i s(n-i)$.
- The predictor is: $\hat{B}_T(q) = \sum_{i=1}^N \hat{b}_{iT} q^{-i}$.
- The transfer function between s(n) and e(n) will be: $1 \hat{B}_T(q)$.
- The transfer function between e(n) and $\hat{s}(n)$ will be: $\frac{1}{1-\hat{B}_R(q)}$.

In the transmitter:

$$\hat{x}_T(n) = \sum_{i=1}^{N} \hat{b}_{iT}(n) [\hat{x}_T(n-i) + e(n-i)]$$
 (1)

and $e(n) = s(n) - \hat{x}_T(n) + \nu_Q(n)$ or

$$s(n) = e(n) - \nu_Q(n) + \hat{x}_T(n)$$
 (2)

By replacing the signal model s(n) in (2) and using (1),

$$e(n) = w(n) + \sum b_{i}[e(n-i) - \nu_{Q}(n-i) + \hat{x}_{T}(n-i)] + \nu_{Q}(n) + \hat{x}_{T}(n)$$

$$= w(n) + \sum b_{i}[e(n-i) - \nu_{Q}(n-i) + \hat{x}_{T}(n-i)] + \nu_{Q}(n) + \sum \hat{b}_{iT}[e(n-i) + \hat{x}_{T}(n-i)]$$

$$= \sum [b_{i} - \hat{b}_{iT}(n)][e(n-i) + \hat{x}_{T}(n-i)] + w(n) + \nu_{Q}(n) - \sum \hat{b}_{iT}n_{Q}(n-i)$$

$$\begin{bmatrix} x(n) & e(n) + \hat{x}_T \\ y(n) + \nu(n) & s(n) + \nu_Q(n) \\ \hat{y}(n) & \hat{x}_T(n) \\ \nu(n) & w(n) + \nu_Q(n)[1 - \hat{B}_{iT}(q)] \end{bmatrix}$$

Then, the LMS algorithm related to this problem will be:

$$\hat{b}_i(n+1) = \hat{b}_i(n) + \mu e(n)[e(n-i) + \hat{x}(n-i)]$$

When $\nu_C(n) = 0$, this equation is useful for both transmitter and receiver. Since in general $\nu_C(n) \neq 0$, leakage is introduced in the receiver, i.e.,

$$\hat{b}_i(n+1) = (1-\lambda)\hat{b}_i(n) + \mu e(n)[e(n-i) + \hat{x}(n-i)]$$

1.3 Inverse filtering: Linear and Decision feedback equalization

Figure 4: Linear equalization

In this case

$$y(n) = \sum_{i=0}^{N} f_i(n)x(n-i)$$
 $x(n) = w(n) + \nu(n)$

With an AR model of the channel $C(q) = \frac{1}{B(q)}$ such that $s(n) = \sum_{i=0}^{N} b_i w(n-i)$, i.e., a **minimum phase stable channel**, then

$$w(n) = \frac{s(n)}{b_0} - \sum_{i=1}^{N} \frac{b_i}{b_0} w(n-i)$$

Using training

$$e(n) = s(n) - y(n) = \sum_{i=0}^{N} b_i w(n-i) - \sum_{i=1}^{N} f_i(n) x(n-i)$$

$$= \sum_{i=0}^{N} (b_i - f_i(n)) x(n-i) - \sum_{i=0}^{N} b_i \nu(n-i)$$

$$= \tilde{\boldsymbol{b}}^T(n) \boldsymbol{x}(n) - \sum_{i=0}^{N} b_i \nu(n-i)$$

This can be related to the basic identifier as shown in the in the following table

$$\begin{bmatrix}
\hat{\boldsymbol{b}}(n) & \boldsymbol{f}(n) \\
\nu(n) & -\sum_{i=0}^{N} b_i \nu(n-i)
\end{bmatrix}$$

Note: since in general the noise term is not white (correlated by the channel parameters), the LMS parameter estimation is biased.

With a FIR model (a truncated version) of the channel, i.e., C(q) such that

$$w(n) = \sum_{i=0}^{N} c_i s(n-i)$$

then $x(n) = \sum_{i=0}^{N} c_i s(n-i) + \nu(n)$.

The equalizer is described by

$$y(n) = \sum_{i=0}^{N} f_i x(n-i)$$

The channel - equalizer combination given by

$$\mathbf{h} = [h_0, ..., h_{2N}]^T$$

(convolution of ${\cal C}(q)$ and ${\cal F}(q)$) can be written as

$$\text{where } \boldsymbol{\Delta} = \begin{bmatrix} c_0 & 0 & 0 \\ c_1 & c_0 & 0 \\ \vdots & c_1 & c_0 \\ \vdots & \vdots & \vdots \\ c_{2N+1} & \vdots & \vdots \\ 0 & \vdots & \vdots \\ c_{2N+1} & \vdots \\ 0 & c_{2N+1} \end{bmatrix} (2N+1) \times (N+1) \text{ and } \boldsymbol{f} = [f_0, ..., f_N]^T.$$

With a delay of δ units, $\boldsymbol{h}^{opt} = [0...010...0]^T$.

Given Δ , the equation above can be solved in the mean square sense (pseudoinverse).

Problem exists in the extreme values (maximums) of the frequency response of the equalizer where the channel has a transfer function with small values.

Then, if channel noise exist, the noise power is amplified at the equalizer output.

A possible reduction of noise sensitivity is obtained considering the re-use of past detected symbols, i.e., **Decision Feedback Equalization**

Figure 5: Decision feedback equalization

Consider the channel divided in

- a precursor response: $\sum_{i=-(N-1)}^{0} c_i(n)$ (equalized by F(z)) the interference to be equalized in future symbols,
- a poscursor response: $\sum_{i=1}^{M} c_i(n)$ (equalized by B(z)) the interference remaining in correct detected symbols.

In such a way that

$$s'(n) = \sum_{i=-(N-1)}^{0} f_i(n)x(n-i) - \sum_{i=1}^{M} b_i(n)\hat{s}(n-i) = F(q)x(n) - B(q)\hat{s}(n)$$

If the detected symbols are correct (or if a training period exist): $\hat{s}(n) = s(n)$, is easy to see that:

$$s'(n) = F(q)(C(q)s(n) + \nu(n)) - B(q)s(n)$$

= $(F(q)C(q) - B(q))s(n) + F(q))\nu(n)$

Note that, for a given channel transfer function, noise not intervenes in the first term. Then the poscursor filter B(q) can be obtained as a function of the precursor filter.

Because we work with a truncated version of the channel C(q) we can not obtain a straightforward relationship to the basic recursive identifier. But, considering that the error can be written as

$$e(n) = \hat{s}(n) - s'(n) = \hat{s}(n) - [(F(q)C(q) - B(q))s(n)] + F(q)\nu(n)]$$

is not hard to see that the associated LMS algorithm has the form

$$\hat{f}_i(n+1) = \hat{f}_i(n) + \mu e(n) \left[\sum_{k=-(N-1)}^{0} f_k(n) x(n-k-i) - \sum_{k=1}^{M} b_k(n) \hat{s}(n-k-i) \right]$$

$$\hat{b}_j(n+1) = \hat{b}_j(n) + \mu e(n) \left[\sum_{k=-(N-1)}^{0} f_k(n) x(n-k-j) - \sum_{k=1}^{M} b_k(n) \hat{s}(n-k-j) \right]$$

for
$$i = -(N-1), ...0$$
 and $j = 1, ..., M$.

Another alternative is the independent channel identification and their utilization in equalization.

Figure 6: Independent channel identification

1.4 Interference cancelling

1.4.1 Active noise control

Many different configuration exist for Active noise control. A suitable one is the following

Figure 7: Active noise control: feedfoward (broadband) system

- x(n): noise source (primary source, microphone).
- $\hat{y}(n)$ (secondary source, loudspeaker).
- $e_f(n)$ error source (monitor microphone).
- F(z): noise transfer function.
- C(z) acoustic system (i.e.: a duct).
- B(z) adaptive noise controller.
- S(z) transducer transfer function.

Assuming F(z) = 1, and in order to cope with the unobservable error e(n), it is necessary to work with a **Filtered x-LMS algorithm**,

$$\hat{b}_i(n+1) = \hat{b}_i(n) + \mu e_s(n) x_f(n-i)$$

where $x_f(n) = \hat{S}(q)x(n)$, where $\hat{S}(q)$ is an estimate of S(q). Since in this case,

$$e_s(n) = S(q)e(n) = S(q)[C(q)x(n) - B(q)x(n)]$$

$$= S(q)[\sum_{i=1}^{N} (c_i - b_i(n))x(n-i)]$$

$$\cong \tilde{\boldsymbol{b}}^T(n)\boldsymbol{x}_f(n)$$

where $\tilde{\boldsymbol{b}}(n) = (\boldsymbol{c} - \boldsymbol{b}(n))$. Then, the basic recursive identifier is related by

$\nu(n)$	0 (noise is the primary source)
x(n)	$x_f(n)$
e(n)	$e_s(n)$

1.4.2 Adaptive notch filters

Figure 8: Adaptive line enhancer: a) FIR filter, b) IIR notch filter.

In this case the requirement is to improve the signal-to noise ratio for the input signal x(n), described by

$$x(n) = c_o \sin(w_o n + \phi_o) + \nu(n)$$

where c_o is the constant amplitude of the sinusoid of unknown frequency w_o , and ϕ_o is its phase.

This is a classical detection problem whose optimum solution (maximum signal-to-noise ratio) to recover a real signal h(n) is given by the associated matched filter, h(-n). In this case a discrete sinusoid.

- The adaptive FIR filter solution, $B(q) = \sum_{i=1}^{N} b_i(n)q^{-i}$, is obviously only a finite memory approximation of the matched filter. The delay $z^{-\delta}$ allows to work with several cycles.
- The specific sinusoid frequency w_o can be obtained using an FFT on the estimated impulse response coefficients, $b_i(n)$.
- ullet As could be expected, high N improves the signal-to-noise ratio of the estimate.
- The main problem, without regarding computational complexity, is the occurrence of false noise-induced peaks in the frequency response.

• Consider now the variance $E[y^2(n)]$ of the output signal y(n) in the second configuration, that can be written as

$$E[y^{2}(n)] = c_{o}^{2} |H(e^{jw})|^{2} + E[\nu^{2}(n)]$$

if $H(e^{jw}) = \begin{cases} 0 & w = w_o \ and \ w = -w_o \\ 1 & \forall w \end{cases}$, i.e., an ideal notch filter, we obtain

$$E[y^{2}(n)] = \begin{cases} E[\nu^{2}(n)] & w = w_{o} \\ c_{o}^{2} + E[\nu^{2}(n)] & \forall w \end{cases}$$

• then we can recover the sinusoid using an ideal bandpass filter given by

$$|G(e^{jw})|^2 = 1 - |H(e^{jw})|^2 = \begin{cases} 1 & w = w_o \text{ and } w = -w_o \\ 0 & \forall w \end{cases}$$

• The adaptive IIR filter solution contemplates the use of a practical notch filter with, for example, the following transfer function:

$$H(z) = \frac{1 + a z^{-1} + z^{-2}}{1 + a r z^{-1} + r^2 z^{-2}}$$

where: 0 < r < 1 is a constant, and a is related to the sinusoid frequency w_o by $w_o = arcos(-a/2)$, provided -2 < a < 2.

- It is not hard to see that the frequency response of H(z) is a notch filter with notch bandwidth decreasing when $r \to 1$.
- A basic recursive identifier is not trivial in this case, mainly because the adaptive filter is IIR in this case. Anyway, the algorithm to be considered has the familiar form

$$a(n+1) = a(n) - \mu y(n) \nabla_a(n)$$

where $\nabla_a = \frac{\partial y^2(n)}{\partial a(n)}$ and obviously a(n) is the parameter to be updated.

• Straightforward calculations show that

$$\nabla_a(n) = (1 - r) \left(\frac{1 - r \, q^{-2}}{(1 + a \, r \, q^{-1} + r^2 q^{-2})^2} \right) y(n - 1)$$

• Finally the relationship with the basic recursive identifier is given by

$\nu(n)$	0 (noise exist at input)
x(n)	$\nabla_a(n)$
e(n)	y(n)

1.5 Overview and objectives

An outline of the proposed contents is the following:

- 1. Adaptive FIR filters. Some algorithms and their limitations.
- 2. Adaptive IIR filters. Motivation from system identification theory.
- 3. Some useful tools. Concepts on Approximation and Stability theory.
 - (a) Considerations on time variant linear systems.
 - (b) ODE, conditions for the association, Liapunov function. Stationary points: theorems.
 - (c) Approximation concepts: Orthonormal space decomposition of \mathcal{L}_2 (interpolation), relationship with Hankel norm.
 - (d) Stability concepts: Stability of a quasi-time-invariant linear system. Stability of a particular non linear system: passivity and hyperstability.
- 4. MSOE minimization and related algorithms.
- 5. The Equation Error perspective. An IIR extension of the FIR adaptive filter.
- 6. Alternative criteria I: HARF, an stable but incomplete solution.
- 7. Alternative criteria II: Steiglitz-McBride, the closest approximation to the global minimum.
- 8. A brief discussion of adaptive IIR filters.