2 Adaptive FIR filters

Some algorithms and their limitations

- Wiener filtering.
- Stationary case description (steepest descent, quasi-Newton).
- Traditional updating schemes: LMS, RLS, QR.
- Convergence in the mean and mean square error variance.
- Convergence speed correlation matrix conditioning trade off.
- Different realizations.

In a general framework, the Mean Squared Error (MSE) $E\{e^2(n)\}$, has the following quadratic form:

$$E\{e^2(n)\} = \rho - 2 \boldsymbol{\theta}^T \boldsymbol{p} + \boldsymbol{\theta}^T \boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{\theta}$$

where $\mathbf{R}_x > 0$ and \mathbf{p} and ρ are assumed to be known in an ideal setting or, from a practical implementation point of view, some suitable estimates are at hand.

Figure 9: Adaptive filtering general framework.

2.1 Wiener Filtering

2.1.1 Optimal filtering

- **Problem 1: Inverse filtering**: To design H(z), the input (observable signal) x(n) has noise and the reference is not available. The idea is to design H(z) so that $\hat{y}(n) = H(z)x(n)$ approximates y(n).
- Problem 2: Direct filtering or modeling: y(n) is the not observable output of the filter to design H(z). The idea is to design H(z) so that $\hat{y}(n) = H(z)x(n)$ approximates y(n).

Figure 10: a)Inverse filtering and b) direct filtering or modeling

- Assumption: x(n) and y(n) jointly wide sense stationary and have zero mean and are uncorrelated with the disturbance.
- The degree of approximation is measured by the Mean squared error,

$$E\{e^{2}(n)\} = E\{(y(n) - \hat{y}(n))^{2}\}$$
(3)

• Second order statistics known, i.e.,

$$\begin{array}{rcl} p(k) &=& E\{y(n-k)x(n)\}\\ r(k) &=& E\{x(n-k)x(n)\}\\ \rho &=& E\{y^2(n)\} \end{array}$$

2.1.2 The inverse filtering problem

 $x(n) = s(n) + \nu_1(n), \ y(n) = s(n) \ (s(n) \text{ recoverable signal}).$ Since $\hat{y}(n) = \sum_k h(k)x(n-k)$, three cases:

- Non causal case: x(n-k) known for all k, no constraints on h(n), i.e., $||h(n)||^2 < \infty$.
- Causal FIR case: x(n-k) known for $0 \le k \le n$, so h(k) = 0 for k < 0 and k > n.
- Causal IIR case: x(n-k) known for $k \ge 0$, so h(k) = 0 for k < 0 and $||h(n)||^2 < \infty$.

$$E[e^{2}(n)] = E[y^{2}(n)] - 2\sum_{k} h(k)E[y(n)x(n-k)] + \sum_{k} \sum_{l} h(l)h(k)E[x(n-k)x(n-l)]$$

$$= \rho - 2\sum_{k} h(k)p(k) + \sum_{k} \sum_{l} h(k)h(l)r(l-k)$$

or

$$r_{e}(k) = r_{y}(k) - r_{y}\hat{y}(k) - r_{\hat{y}}y(k) + r_{\hat{y}}\hat{y}(k)$$

$$= \rho(k) - \sum_{l} [h(l)p(l+k) + p(l)h(l+k)]$$

$$+ \sum_{l} \sum_{j} h(l)r(l+k-j)h(j)$$

$$S_{e}(e^{jw}) = S_{y}(e^{jw}) - S_{yx}(e^{jw})H^{*}(e^{jw}) - S_{yx}^{*}(e^{jw})H(e^{jw}) + S_{x}(e^{jw})|H^{*}(e^{jw})|^{2}$$

$$= \left| H(e^{jw}) - \frac{S_{yx}(e^{jw})}{S_{x}(e^{jw})} \right|^{2} S_{x}(e^{jw}) + \left[S_{y}(e^{jw}) - \frac{|S_{yx}(e^{jw})|^{2}}{S_{x}(e^{jw})} \right]$$

• the non causal case: $S_{yx}(e^{jw}) = S_s(e^{jw})$ and $S_x(e^{jw}) = S_s(e^{jw}) + S_{\nu}(e^{jw})$, i.e.,

$$H(e^{jw}) = \frac{S_{y\nu}(e^{jw})}{S_x(e^{jw})} = \frac{S_s(e^{jw})}{S_s(e^{jw}) + S_\nu(e^{jw})}$$

• the causal FIR case:

$$E[e^{2}(n)] = E[y^{2}(n)] - 2\sum_{k=0}^{N} h(k)E[y(n)x(n-k)]$$

$$+ \sum_{k=0}^{N} \sum_{l=0}^{N} h(l)h(k)E[x(n-k)x(n-l)]$$

$$= \rho - 2\sum_{k=0}^{N} h(k)p(k) + \sum_{k=0}^{N} \sum_{l=0}^{N} h(k)h(l)r(l-k)$$

that is minimized for

$$p(k) = \sum_{n=0}^{N} r(k-n)h(n), \text{ or }$$

$$0 = E[e(n)x(n-k)], \text{ for } 0 \le k \le N$$

Let consider two cases:

- Filtering (basic equalization): if $x(n) = s(n) + \nu(n)$ and y(n) = s(n-N), then $(r(n) = r_x(n) + r_\nu(n))$ and $p(n) = r_s(n-N)$:

$$egin{aligned} oldsymbol{R}_s + oldsymbol{R}_
u \end{aligned} egin{aligned} h(0) & dots \ h(N) & dots \ h(2N) \end{aligned} \end{aligned} = egin{aligned} oldsymbol{R}_s & \begin{bmatrix} 0 \ dots \ 1 \ dots \ 0 \end{bmatrix} \end{aligned}$$

whose solution is a linear phase FIR filter (h(n) = h(2N - n), n = 0, 1, ..., 2N.

- Prediction:
 - * Forward: if $\hat{y}(n) = \sum_{k=1}^{N} h_k x(n-k)$ and y(n) = x(n), then:

$$\begin{bmatrix} r(1) & r(2) & \cdots & r(N) \\ r(2) & r(1) & \cdots & r(N-1) \\ \vdots & \vdots & \vdots \\ r(N) & r(N-1) & \cdots & r(1) \end{bmatrix} \begin{bmatrix} h(1) \\ h(2) \\ \vdots \\ h(N) \end{bmatrix} = \begin{bmatrix} r(1) \\ r(2) \\ \vdots \\ r(N) \end{bmatrix}$$

* Backward: if $\hat{y}(n-N) = \sum_{k=1}^{N} g_k x(n-k+1)$ and y(n) = x(n-M), then:

$$\begin{bmatrix} r(1) & r(2) & \cdots & r(N) \\ r(2) & r(1) & \cdots & r(N-1) \\ \vdots & \vdots & \vdots & \vdots \\ r(N) & r(N-1) & \cdots & r(1) \end{bmatrix} \begin{bmatrix} g(1) \\ g(2) \\ \vdots \\ g(N) \end{bmatrix} = \begin{bmatrix} r(N) \\ r(N-1) \\ \vdots \\ r(1) \end{bmatrix}$$

The solutions are related by:

$$g_k = h_{N-k} \quad for \ k = 1, ...N-1$$

• the causal IIR case: Here, in a similar form that for the FIR case, except for $N \to \infty$,

$$p(k) = \sum_{n=0}^{\infty} r(k-n)h(n),$$

is the optimal condition, for $0 \le k < \infty$. A frequency domain solution is obtained if

- -x(n) = G(z)u(n), u(n) white noise, i.e., $S_u(e^{jw}) = 1$ and G(z) is invertible.
- $-y(n) = F(z)u(n) + \nu(n)$, $\nu(n)$ colored noise uncorrelated with u(n), i.e., $S_{u\nu}(e^{jw}) = 0$.

then with $S_{yx}(e^{jw})$ and $S_y(e^{jw})$ respectively,

$$F(e^{jw}) = \frac{S_{yx}(e^{jw})}{G(e^{jw})^*}$$

$$S_{\nu}(e^{jw}) = S_{y}(e^{jw}) - |F(e^{jw})|^2 = S_{y}(e^{jw}) - \frac{|S_{yx}(e^{jw})|^2}{S_{x}(e^{jw})}$$

$$S_{e}(e^{jw}) = |F(e^{jw}) - G(e^{jw})H(e^{jw})|^2 + S_{\nu}(e^{jw})$$

and $H(z) = H_0(z)/G(z) = F_+(z)/G(z)$, where $F_+(z)$ is the causal part of F(z).

2.1.3 The direct filtering or modeling problem

Here
$$y(n) = H(z)x(n) + \nu_2(n), \ \hat{y}(n) = \hat{H}(z)x(n).$$

• In the FIR case,

$$\hat{y}(n) = b_0 x(n) + b_1 x(n-1) + \dots + b_N x(n-N)
= \boldsymbol{\theta}^T \boldsymbol{x}(n)$$

where $\boldsymbol{\theta} = [b_0...b_N]^T$ and $\boldsymbol{x}(n) = [x(n)...x(n-N)]^T$.

Then in an stationary environment,

$$E\{e^2(n)\} = \rho - 2 \boldsymbol{\theta}^T \boldsymbol{p} + \boldsymbol{\theta}^T \boldsymbol{R}_x \boldsymbol{\theta}$$

where $\mathbf{R}_{x} = E\{\mathbf{x}(n)\mathbf{x}^{T}(n)\}$ and $\mathbf{p} = E\{\mathbf{x}(n)y(n)\}$ are known. A quadratic function of $\boldsymbol{\theta}(n)$ with

$$\nabla = \frac{\partial E\{e^2(n)\}}{\partial \boldsymbol{\theta}} = \left[\frac{\partial E\{e^2(n)\}}{\partial b_0} \frac{\partial E\{e^2(n)\}}{\partial b_1} ... \frac{\partial E\{e^2(n)\}}{\partial b_N}\right]^T$$
$$= -2 \boldsymbol{p} + 2 \boldsymbol{R}_x \boldsymbol{\theta} = 0$$

then the MSE is minimized when

$$\boldsymbol{\theta}_o = \boldsymbol{R_x}^{-1} \boldsymbol{p}$$

Note also that

$$\nabla = \frac{\partial E\{e^2(n)\}}{\partial \boldsymbol{\theta}} = E[2 e(n) \frac{\partial e(n)}{\partial \boldsymbol{\theta}}]$$
$$= -2E[e(n)\boldsymbol{x}(n)] = 0$$

i.e., the normal equation.

Figure 11: Relationship between prediction and whitening filtering. a) forward predictor and whitening filter, b) backward predictor and whitening filter.

• Whitening a forward prediction filter: with $e_f(n) = y(n) + \sum_{k=1}^{N} a_k y(n - k)$, find A(z), constrained to be a monic FIR filter (a(0) = 1).

$$\begin{bmatrix} r(0) & r(1) & \cdots & r(N) \\ r(1) & r(0) & \cdots & r(N-1) \\ \vdots & \vdots & \vdots \\ r(N) & r(N-1) & \cdots & r(0) \end{bmatrix} \begin{bmatrix} 1 \\ a(1) \\ \vdots \\ a(N) \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

The N-order (forward) prediction filter and the N + 1-order whitening filter are related by $A_{N+1}(z) = 1 - z^{-1}H_N(z)$.

• Whitening a backward prediction filter: with $e_b(n) = y(n-N) + \sum_{k=1}^{N} b_k y(n-k+1)$, find B(z), constrained to be a monic FIR filter (b(0) = 1). Then

$$\begin{bmatrix} r(0) & r(1) & \cdots & r(N) \\ r(1) & r(0) & \cdots & r(N-1) \\ \vdots & \vdots & \vdots \\ r(N) & r(N-1) & \cdots & r(0) \end{bmatrix} \begin{bmatrix} 1 \\ b(1) \\ \vdots \\ b(N) \end{bmatrix} = \begin{bmatrix} \beta \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

An important property: the outputs collection of whitening backward filters of orders 1 to N are orthogonal, i.e.,

$$E\{e_b^k e_b^m\} = \begin{cases} \beta_k & if \ m = k \\ 0 & if \ m \neq k \end{cases}$$

where $\beta_k = E\{(e_b^k)^2\}$.

This property can be used to obtain an useful decomposition (low Cholesky in this case) of the correlation matrix \mathbf{R} ,

$$\mathbf{D}_{L} = diag[\beta_{0}, ..., \beta_{N}]$$

$$= E\{\mathbf{e}_{b}^{N} \mathbf{e}_{b}^{N}\} = E\{\mathbf{L} \mathbf{x} \mathbf{x}^{T} \mathbf{L}^{T}\}$$

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ b_{N}(1) & 1 & \cdots & & \\ \vdots & & \vdots & \\ b_{N}(N) & \cdots & b_{1}(1) & 1 \end{bmatrix}$$

$$\mathbf{R}^{-1} = \mathbf{L} \mathbf{D}_{L}^{-1} \mathbf{L}^{T}$$

A similar factorization can be obtained but related to the whitening forward filtering, i.e., (upper Cholesky)

$$oldsymbol{R}^{-1} = oldsymbol{U} oldsymbol{D}_U^{-1} oldsymbol{U}^T \ oldsymbol{U} = egin{bmatrix} 1 & a_1(1) & \cdots & a_N(N) \\ 0 & 1 & \cdots & a_N(N-1) \\ & & \vdots & a_N(1) \\ 0 & 0 & \cdots & 1 \end{bmatrix} \ oldsymbol{D}_U = diag[lpha_0, ..., lpha_N]$$

where can be shown that $\alpha_k = \beta_k$.

2.2 Optimization in the ideal setting

2.2.1 Newton algorithm

$$\boldsymbol{\theta}(n+1) = \boldsymbol{\theta}(n) - \mu \boldsymbol{R}_x^{-1} \boldsymbol{\nabla}(n)$$

= $\boldsymbol{\theta}(n) + \mu \boldsymbol{R}_x^{-1} (-2\boldsymbol{p} + 2\boldsymbol{R}_x \boldsymbol{\theta}(n)) = (\boldsymbol{I} - 2\mu \boldsymbol{I}) \boldsymbol{\theta}(n) + 2\mu \boldsymbol{\theta}_o$

if $\mu = 1/2$ the Wiener solution is reached in one step!.

2.2.2 Steepest Descent algorithm

Using
$$\nabla(n) = 2(\mathbf{R}_x \boldsymbol{\theta}(n) - \mathbf{p})$$
, then

$$\theta(n+1) = \theta(n) - \mu \nabla(n)$$

= $\theta(n) + 2\mu \mathbf{p} - 2\mu \mathbf{R}_x \theta(n)$

With $\tilde{\boldsymbol{\theta}}(n) = \boldsymbol{\theta}(n) - \boldsymbol{\theta}_o$,

$$\tilde{\boldsymbol{\theta}}(n+1) = (\boldsymbol{I} - 2\mu \boldsymbol{R}_x) \, \tilde{\boldsymbol{\theta}}(n)
= (\boldsymbol{I} - 2\mu \boldsymbol{R}_x)^{n+1} \, \tilde{\boldsymbol{\theta}}(0)$$

Since $\mathbf{R}_x > 0$, $\mathbf{R}_x = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$, where \mathbf{Q} is an orthogonal and $\mathbf{\Lambda}$ is the diagonal eigenvalue matrix. Then with $\boldsymbol{\vartheta}(n) = \mathbf{Q}^T \tilde{\boldsymbol{\theta}}(n)$,

$$E\left\{\tilde{\boldsymbol{\vartheta}}(n+1)\right\} = \left[\boldsymbol{I} - \mu\boldsymbol{\Lambda}\right] E\left\{\tilde{\boldsymbol{\vartheta}}(n)\right\}$$

$$= \left[\boldsymbol{I} - \mu\boldsymbol{\Lambda}\right]^{n+1} \left\{\tilde{\boldsymbol{\vartheta}}(0)\right\}$$

$$= \begin{bmatrix} (1 - 2\mu\lambda_0)^{n+1} & 0 & \cdots & 0 \\ 0 & (1 - 2\mu\lambda_1)^{n+1} & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & (1 - 2\mu\lambda_N)^{n+1} \end{bmatrix} \tilde{\boldsymbol{\vartheta}}(0)$$

Then, SD algorithm converges to the Wiener solution if, for $n \to \infty$, μ satisfy

$$0 < \mu < \frac{2}{\lambda_{max}}$$

where λ_{max} is the maximum eigenvalue of \mathbf{R}_x .

2.2.3 Conjugate direction algorithm

Consider d_i , j = 0, ..., N, that verify

$$\boldsymbol{d}_{j}^{T}\boldsymbol{R}_{x}\boldsymbol{d}_{k}=0 \quad if \ j \neq k$$

as conjugate directions. Then:

Theorem: The sequence

$$\boldsymbol{\theta}(n+1) = \boldsymbol{\theta}(n) + \gamma_n \boldsymbol{d}_n$$

where $\gamma_n = -(\boldsymbol{d}_n^T \boldsymbol{R}_x \boldsymbol{d}_n)^{-1} \boldsymbol{d}_n^T \boldsymbol{\nabla}(n)$ and $\boldsymbol{\nabla}(n) = 2(\boldsymbol{R}_x \boldsymbol{\theta}(n) - \boldsymbol{p})$ converges to $\boldsymbol{\theta}_o = \boldsymbol{R}_x^{-1} \boldsymbol{p}$ after N+1 steps, i.e., $\boldsymbol{\theta}(n) = \boldsymbol{\theta}_o$.

Assuming to minimize the MSE with $\boldsymbol{\theta}(n)$ constrained in $\boldsymbol{\theta}(0) + \boldsymbol{D}_N$, where $\boldsymbol{D}_N = [\boldsymbol{d}_0 \, \boldsymbol{d}_1 \dots \boldsymbol{d}_{N-1}]$. Then $(\boldsymbol{\theta}(n) - \boldsymbol{\theta}_o)$ is given by the \boldsymbol{R}_x -orthogonal projection of $(\boldsymbol{\theta}_o - \boldsymbol{\theta}(0))$ onto \boldsymbol{D}_N , i.e.,

$$\theta(n) = \theta(0) + \mathbf{D}_N (\mathbf{D}_N^T \mathbf{R}_x \mathbf{D}_N)^{-1} \mathbf{D}_N^T \mathbf{R}_x (\theta_o - \theta(0))$$

= $\theta(0) + \sum_{k=0}^{N-1} \mathbf{d}_k (\mathbf{d}_k^T \mathbf{R}_x \mathbf{d}_k)^{-1} \mathbf{d}_k^T \mathbf{R}_x (\theta_o - \theta(0))$

But $d_k^T \mathbf{R}_x \boldsymbol{\theta}_o = d_k^T \mathbf{R}_x \boldsymbol{\theta}(k)$ so that with $\boldsymbol{p} = \mathbf{R}_x \boldsymbol{\theta}_o$ is possible to verify

$$\boldsymbol{d}_k^T \boldsymbol{R}_x (\boldsymbol{\theta}_o - \boldsymbol{\theta}_k) = -\boldsymbol{d}_k^T \boldsymbol{\nabla}(k)$$

that serves to justify the gain γ_k .

2.3 Updating algorithms

Two important properties related to estimation (updating) algorithms are in order:

- An estimate is unbiased if $E\{\theta(n)\} = \theta_o$.
- An estimate is consistent if $\theta(n) \to \theta_o$ as $n \to \infty$.

Since second order statistics are not usually available, some simplifications in the ideal method are necessary.

2.3.1 The Least-Mean-Square (LMS) algorithm

When the gradient ∇ is not available, a suitable estimate is $\nabla \approx -2e(n)\boldsymbol{x}(n)$, the LMS algorithm

$$\boldsymbol{\theta}(n+1) = \boldsymbol{\theta}(n) + \mu \boldsymbol{x}(n)e(n) \tag{4}$$

where $\mu > 0$. As can be expected by the analysis of the ideal SD algorithm, this parameter is related to convergence speed and stability of the algorithm. Some useful variants

$$\theta(n+1) = \theta(n) + \mu \mathbf{x}(n) \operatorname{sgn}[e(n)] \operatorname{Sign} \operatorname{Error}$$

$$\theta(n+1) = \theta(n) + \mu \operatorname{sgn}[\mathbf{x}(n)] e(n) \operatorname{Sign} \operatorname{Data}$$

$$\theta(n+1) = \theta(n) + \mu \operatorname{sgn}[\mathbf{x}(n)] \operatorname{sgn}[e(n)] \operatorname{Sign} \operatorname{Sign}$$

2.3.2 Convergence in the Mean and Error variance of the LMS

Using some simplificatory hypotesis, and by defining $\tilde{\boldsymbol{\theta}}(n) = \boldsymbol{\theta}(n) - \boldsymbol{\theta}_o$, and rewritten (4) as follows

$$\tilde{\boldsymbol{\theta}}(n+1) = \left[\boldsymbol{I} - \mu \boldsymbol{x}(n) \boldsymbol{x}^{T}(n) \right] \tilde{\boldsymbol{\theta}}(n) + \mu \boldsymbol{x}(n) (y(n) - \boldsymbol{x}^{T}(n) \boldsymbol{\theta}_{o})$$
 (5)

then

$$E\left\{\tilde{\boldsymbol{\theta}}(n+1)\right\} = E\left\{\left[\boldsymbol{I} - \mu \boldsymbol{x}(n)\boldsymbol{x}^{T}(n)\right]\tilde{\boldsymbol{\theta}}(n)\right\} + \mu E\left\{\boldsymbol{x}(n)(y(n) - \boldsymbol{x}^{T}(n)\boldsymbol{\theta}_{o})\right\}$$
(6)

Using the hypotesis

$$E\left\{\tilde{\boldsymbol{\theta}}(n+1)\right\} = \left[\boldsymbol{I} - \mu \boldsymbol{R}_x\right] E\left\{\tilde{\boldsymbol{\theta}}(n)\right\} \tag{7}$$

Using $\mathbf{R}_x = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$ (Cholesky) and pre-multiplying (7) by \mathbf{Q}^T and defining

$$\boldsymbol{\vartheta}(n) = \boldsymbol{Q}^T \tilde{\boldsymbol{\theta}}(n) \tag{8}$$

is possible to obtain

$$E\left\{\tilde{\boldsymbol{\vartheta}}(n+1)\right\} = \left[\boldsymbol{I} - \mu\boldsymbol{\Lambda}\right] E\left\{\tilde{\boldsymbol{\vartheta}}(n)\right\}$$
$$= \left[\boldsymbol{I} - \mu\boldsymbol{\Lambda}\right]^{n+1} E\left\{\tilde{\boldsymbol{\vartheta}}(0)\right\}$$
(9)

Then, in order that $\theta(n)$ converge in the mean to the Wiener solution

$$0 < \mu < \frac{1}{\lambda_{max}} \tag{10}$$

Since the gradient is noisy, some residual MSE after convergence can be expected. This residual error is called **Excess in the MSE** and is defined at time n by

$$\Delta \xi(n) = \xi(n) - \xi_{min} = E\{\tilde{\boldsymbol{\theta}}^{T}(n)\boldsymbol{R}_{x}\tilde{\boldsymbol{\theta}}(n)\}$$

$$= E\{tr(\boldsymbol{R}_{x}\tilde{\boldsymbol{\theta}}(n))\tilde{\boldsymbol{\theta}}^{T}(n)\}$$

$$= tr\left(E\{\boldsymbol{R}_{x}\tilde{\boldsymbol{\theta}}(n)\tilde{\boldsymbol{\theta}}^{T}(n)\}\right)$$

where $tr(\mathbf{AB}) = tr(\mathbf{BA})$ was used.

Using this, and after some not trivial intermediate steps, it is possible to shown that

$$\Delta \xi(n) \cong \frac{\mu \sigma_{\nu}^{2} \sum_{k=0}^{N} \lambda_{k}}{1 - \mu \sum_{k=0}^{N} \lambda_{k}}$$
$$= \frac{\mu \sigma_{\nu}^{2} tr[\mathbf{R}]}{1 - \mu tr[\mathbf{R}]}$$

where $\sigma_{\nu}^2 = E\{\nu^2(n)\}$. Finally, for $n \to \infty$

$$\xi_{exc} = \lim_{n \to \infty} \Delta \xi(n) \cong \frac{\mu \sigma_{\nu}^2 tr[\mathbf{R}]}{1 - \mu tr[\mathbf{R}]}$$

and assuming μ small enough,

$$\xi_{exc} \cong \mu \sigma_n^2 tr[\mathbf{R}] = \mu (N+1) \sigma_\nu^2 \sigma_r^2$$

Note that ξ_{exc} is a relative quantity. In order to compare different algorithms a more suitable parameter is the **Misadjustment**:

$$M \stackrel{\triangle}{=} \frac{\xi_{exc}}{\xi_{min}} = \frac{\mu tr[\mathbf{R}]}{1 - \mu tr[\mathbf{R}]}$$

2.3.3 MSE transient

The essential drawback related to the LMS algorithm is that convergence speed depends directly on the correlation matrix eigenvalue spread.

Using the expression of the MSE at time n it is not hard to show that

$$\xi(n) = \xi_{min} + E\{\tilde{\boldsymbol{\vartheta}}^{T}(n)\boldsymbol{\Lambda}\tilde{\boldsymbol{\vartheta}}(n)\}$$

$$= \xi_{min} + \sum_{k=0}^{N} \lambda_{k}\tilde{\vartheta}_{k}^{2}(n)$$

$$= \xi_{min} + \sum_{k=0}^{N} \lambda_{k}(1 - \mu\lambda_{k})^{2n}\tilde{\vartheta}_{k}^{2}(0)$$

Then the transient that characterizes the behavior of the MSE convergence is related to N+1 geometric ratios, $r_k = 1-2\mu\lambda_k$. Using the usual exponential envelope $r_k = 1 - 2\mu\lambda_k \cong 1 - \frac{1}{\tau_k}$, then

$$\tau_k \cong \frac{1}{2\mu\lambda_k}$$

with k = 0, ..., N. This is the time constants related to parameter convergence. For MSE convergence speed

$$\tau_{xi_k} \cong \frac{1}{4\mu\lambda_k}$$

2.3.4 The Normalized LMS algorithm

- To optimize the convergence speed: a time variant convergence factor $\mu(n)$ in the LMS algorithm.
- Consider the difference between the instantaneous squared error $e^2(n)$ and the squared error obtained by $\theta_*(n) = \theta(n) + \Delta \theta(n)$, given by $e^2_*(n)$.
- Then

$$\Delta e^{2}(n) = e_{*}^{2}(n) - e^{2}(n)$$

$$= -2\Delta \boldsymbol{\theta}^{T}(n)\boldsymbol{x}(n)e(n)$$

$$+\Delta \boldsymbol{\theta}^{T}(n)\boldsymbol{x}(n)\boldsymbol{x}^{T}(n)\Delta \boldsymbol{\theta}(n)$$

• Using the $\Delta \theta(n)$ obtained from the LMS algorithm and by minimization of the previous equation with respect to $\mu(n)$,

$$\mu(n) = \left(\frac{1}{2\boldsymbol{x}^T(n)\boldsymbol{x}(n)}\right)$$

2.3.5 The Transform-Domain LMS Algorithm

Figure 12: The transform domain adaptive filter

- Convergence speed is related to different principal axes length of the MSE surface countours.
- If these countours are circular the optimum situation is at hand. This can be achieved only if the eigenvectors of the \mathbf{R}_x matrix are known.
- The MSE surface is changed by a coordinate transform, $\hat{\boldsymbol{x}}(n) = \boldsymbol{T}\boldsymbol{x}(n)$ where $\boldsymbol{T}\boldsymbol{T}^T = \boldsymbol{I}$, or

$$\xi = E\{e^2(n)\} = \xi_{min} + \tilde{\boldsymbol{\theta}}^T E\{\hat{\boldsymbol{x}}(n)\hat{\boldsymbol{x}}^T(n)\} \tilde{\boldsymbol{\theta}}$$
 where $\tilde{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}(n) - \hat{\boldsymbol{\theta}}_o$. Then

$$\xi - \xi_{min} = \tilde{\boldsymbol{\theta}}^T \boldsymbol{T} \boldsymbol{R}_x \boldsymbol{T}^T \tilde{\boldsymbol{\theta}}$$

that represent a **rotation** of the parameter space related to the direct form FIR filter.

- The intersection of the different MSE contour with the *i*-th space parameter coordenates is $\xi \xi_{min} = [\boldsymbol{T}\boldsymbol{R}_{x}\boldsymbol{T}^{T}]_{ii} \tilde{\theta}_{i}$.
- For an hypersphere it is necessary that $|\tilde{\theta}_i| = |\tilde{\theta}_j|$ for all (i, j).
- This conditions can be achieved, at least approximately, using an scaling factor

$$\left[\boldsymbol{T}\boldsymbol{R}_{x}\boldsymbol{T}^{T}\right]_{ii} \cong E\{\hat{x}_{i}^{2}(n)\} = \hat{\sigma}_{i}^{2}$$

• The updating equation of the Transform Domain LMS algorithm is the following

$$\hat{\boldsymbol{\theta}}(n+1) = \hat{\boldsymbol{\theta}}(n) + \mu \boldsymbol{\Lambda}^{-1} \hat{\boldsymbol{x}}(n) e(n) = \hat{\boldsymbol{\theta}}(n) + \mu \boldsymbol{\Lambda}^{-1} \boldsymbol{T} \boldsymbol{x}(n) e(n)$$

where $\mathbf{\Lambda} = diag \left[\hat{\sigma}_1^2, ..., \hat{\sigma}_N^2\right]$ and $\hat{\sigma}_i^2(n+1) = (1 - \mu_{\sigma})\hat{\sigma}_i^2(n) + \mu_{\sigma}\hat{x}_i^2(n)$, with μ_{σ} a small constant.

• Two suitable transform for this algorithm are the *Discrete Fourier Transform* (complex) and the *Discrete Cosine Transform* (real), given by

$$\hat{x}_i(n) = \sqrt{\frac{2}{N+1}} \sum_{k=0}^{N} x(k-n) \cos\left(\pi i \frac{(2k+1)}{2(N+1)}\right)$$

2.3.6 The Quasi-Newton algorithm

- Higher complexity than the LMS but with fast (initial) convergence speed using an estimate of \mathbf{R}_x^{-1} .
- A possible algorithm is the following

$$\boldsymbol{\theta}(n+1) = \boldsymbol{\theta}(n) + \mu \boldsymbol{P}(n+1)\boldsymbol{x}(n)e(n)$$
(11)

where

$$\mathbf{P}(n+1) = \left(\frac{1}{1-\mu}\right) \left(\mathbf{P}(n) - \frac{\mathbf{P}(n)\mathbf{x}(n)\mathbf{x}^{T}(n)\mathbf{P}(n)}{\frac{1-\mu}{\mu} + \mathbf{x}^{T}(n)\mathbf{P}(n)\mathbf{x}(n)}\right)$$
(12)

• P(n+1) represents an estimate of R_x^{-1} at time n+1, in this case using the matrix inversion lemma. This algorithm is called Quasi-Newton.

2.4 Other algorithms

2.4.1 The RLS algorithm

Assuming a linear regressor model:

$$y(n) = \sum_{k=1}^{N} \theta_k^o x(n-k) + \nu(n)$$

The RLS algorithm estimates the θ_o parameters by minimizing

$$V_N(\theta) = \frac{1}{N} \sum_{n=1}^{N} e^2(n)$$

where $e(n) = y(n) - \boldsymbol{\theta}^T(n)\boldsymbol{x}_N(n)$. The well known recursive solution of this problem is

$$\boldsymbol{\theta}(n) = \boldsymbol{\theta}(n-1) + \boldsymbol{\kappa}_N(n) \left(y(n) - \boldsymbol{\theta}^T(n-1) \boldsymbol{x}_N(n) \right)$$

where

$$\boldsymbol{\kappa}_{N}(n) = \boldsymbol{R}_{N-1}^{-1}(n)\boldsymbol{x}_{N}(n) \quad n \geq N$$

 $\boldsymbol{R}_{N-1}(n) = \boldsymbol{R}_{N-1}(n-1) + \boldsymbol{x}_{N}(n)\boldsymbol{x}_{N}^{T}(n)$

2.4.2 The fast RLS algorithm

- The fast RLS will be derived by close relationship with the *conjugate* direction algorithm and the forward and backward prediction filters.
- The choice of two particular conjugate directions is essential for the present derivation of fast RLS algorithm. These conjugate directions are related to the **forward and backward prediction filter coefficients** as discussed below.
- The fast RLS algorithm is related to the Kalman gain updating (in time) $\kappa_N(n-1) \to \kappa_N(n)$.
- This updating can be seen as composed of time update and order update.
 - 1. $\boldsymbol{\kappa}_N(n-1) \rightarrow \boldsymbol{\kappa}_{N+1}(n)$,
 - 2. $\kappa_{N+1}(n) \rightarrow \kappa_N(n)$.
- Due to the shifted structure of the regressor $\boldsymbol{x}_N(n)$,

$$m{x}_{N+1}(n) = \left[egin{array}{c} x(n) \\ m{x}_{N}(n-1) \end{array}
ight] = \left[egin{array}{c} m{x}_{N}(n) \\ x(n-N) \end{array}
ight]$$

where $\mathbf{x}_{N+1,1:N}(n) = \mathbf{x}_{N}(n-1)$ and $\mathbf{x}_{N+1,0:N-1}(n) = \mathbf{x}_{N}(n)$.

• Then, assuming that $\boldsymbol{x}_N(n) = 0$ for $n \leq 0$,

$$\mathbf{R}_{N-1}(n-1) = \mathbf{R}_{1:N}(n)$$
 $\mathbf{R}_{N-1}(n) = \mathbf{R}_{0:N-1}(n)$

where $\mathbf{R}_{1:N}(n)$ and $\mathbf{R}_{0:N-1}(n)$ are the lower right and upper left corner of $\mathbf{R}_{N}(n)$, respectively.

• Kalman gain at times n-1 and n can be written

$$\kappa_{N}(n-1) = \mathbf{R}_{1:N}^{-1}(n-1)\mathbf{x}_{N+1,1:N}(n)$$
 $\kappa_{N}(n) = \mathbf{R}_{0:N-1}^{-1}(n)\mathbf{x}_{N+1,0:N-1}(n)$
 $\kappa_{N+1}(n) = \mathbf{R}_{N}^{-1}(n)\mathbf{x}_{N+1}(n)$

• Following the first step (time update) above, the problem can be stated has: given $\kappa_N(n-1)$ and $\kappa_N(n)$, find $\kappa_{N+1}(n)$ as the solution to the N+1-dimensional problem

$$oldsymbol{z} = oldsymbol{\kappa}_{N+1}^{Minimize}(n) \ \left(rac{1}{2}oldsymbol{z}^Toldsymbol{R}_N(n)oldsymbol{z} - oldsymbol{x}_{N+1}^T(n)oldsymbol{z}
ight)$$

• This can be achieved with a conjugate direction algorithm with

$$\mathbf{d}_{N} = \begin{bmatrix} 1 & \mathbf{a}_{N}^{T}(n) \end{bmatrix}^{T}$$
$$\mathbf{d}_{N}^{T} \mathbf{\nabla}(n) = \begin{bmatrix} 1 & \mathbf{a}_{N}^{T}(n) \end{bmatrix} \mathbf{x}_{N+1}(n) = e_{N}^{f}(n)$$
$$\mathbf{d}_{N}^{T} \mathbf{R}_{N}(n) \mathbf{d}_{N} = \xi_{N}^{f}(n)$$

where $\boldsymbol{a}_N(n)$ are the coefficients of the forward prediction filter, $\xi_N^f(n)$ is an estimate of the least square forward prediction error and $e_N^f(n)$ is the aposteriori forward prediction error.

• Then

$$\boldsymbol{\kappa}_{N+1}(n) = \begin{bmatrix} 0 \\ \boldsymbol{\kappa}_{N}(n-1) \end{bmatrix} + \begin{bmatrix} 1 \\ \boldsymbol{a}_{N}(n) \end{bmatrix} (\xi_{N}^{f}(n))^{-1} e_{N}^{f}(n)$$

• For the second step (order update), i.e., $\kappa_{N+1}(n) \to \kappa_N(n)$, the problem can be stated has: given $\kappa_N(n-1)$ and $\kappa_N(n)$, find $\kappa_{N+1}(n)$ as the solution to the N+1-dimensional problem

$$oldsymbol{z} = oldsymbol{\kappa}_{N+1}^{Minimize}(n) \quad \left(rac{1}{2}oldsymbol{z}^Toldsymbol{R}_N(n)oldsymbol{z} - oldsymbol{x}_{N+1}^T(n)oldsymbol{z}
ight)$$

• This can be achieved using a conjugate direction algorithm with

$$egin{array}{lll} oldsymbol{d}_N &=& [oldsymbol{b}_N^T(n) & 1]^T \ oldsymbol{d}_N^T oldsymbol{
abla}(n) &=& [oldsymbol{b}_N^T(n) & 1] oldsymbol{x}_{N+1}(n) = e_N^b(n) \ oldsymbol{d}_N^T oldsymbol{R}_N(n) oldsymbol{d}_N &=& \xi_N^b(n) \end{array}$$

where $\boldsymbol{b}_N(n)$ are the coefficients of the backward prediction filter, $\xi_N^b(n)$ is an estimate of the least square backward prediction error and $e_N^b(n)$ is the aposteriori backward prediction error.

• Using this results,

$$\boldsymbol{\kappa}_{N+1}(n) = \begin{bmatrix} \boldsymbol{\kappa}_N(n) \\ 0 \end{bmatrix} + \begin{bmatrix} \boldsymbol{b}_N(n) \\ 1 \end{bmatrix} (\xi_N^b(n))^{-1} e_N^b(n)$$

- Since the required solution is the Kalman time update, $\kappa_N(n)$ is obtained as a function of $\kappa_{N+1}(n)$ from the previous equation.
- The complete fast RLS algorithm requires 2 CD algorithms for the time update of the Kalman gain and 2 CD algorithms to obtain:
 - a) the time update of the prediction filter coefficients and
 - b) the parameter updates $\theta(n)$.

2.4.3 QR decomposition based RLS algorithm

• If the standard RLS algorithm

$$\boldsymbol{\theta}(n+1) = \boldsymbol{\theta}(n) + \left[\sum_{k=0}^{n} \lambda^{n-k} \boldsymbol{x}(k) \boldsymbol{x}^{T}(k)\right]^{-1} \boldsymbol{x}(n) e(n)$$

where $e(n) = y(n) - \boldsymbol{\theta}^T(n)\boldsymbol{x}(n)$ ($\boldsymbol{x}(n) = \boldsymbol{x}_N(n)$) and $0 << \lambda \le 1$ is the forgetting factor, is rewritten as

$$\begin{bmatrix} e(n) \\ 0 \\ \vdots \\ 0 \end{bmatrix} - \begin{bmatrix} \boldsymbol{x}^{T}(n) \\ \lambda^{1/2} \boldsymbol{x}^{T}(n-1) \\ \vdots \\ \lambda^{1/2} \boldsymbol{x}^{T}(0) \end{bmatrix} \tilde{\boldsymbol{\theta}}(n)$$
 (13)

where $\tilde{\boldsymbol{\theta}}(n) = \boldsymbol{\theta}(n+1) - \boldsymbol{\theta}(n)$.

• Then $e(n)\mathbf{u}_1 - \mathbf{X}(n)\tilde{\boldsymbol{\theta}}(n)$, where \mathbf{u}_1 is the unit vector with a "1" in the first position, and

$$m{X}(n) = \left[egin{array}{c} m{x}^T(n) \\ \lambda^{1/2} m{X}(n-1) \end{array}
ight]$$

• If an $n \times n$ (with $n \ge N+1$) orthogonal matrix $\mathbf{Q}(n-1)$ is known at time n-1 such that

$$Q(n-1)X(n-1) = \begin{bmatrix} \bigcirc \\ R(n-1) \end{bmatrix}$$

where $\mathbf{R}(n-1)$ is an upper triangular matrix of dimension $N \times N$ (dimension of $\boldsymbol{\theta}(n)$).

• Then

$$\begin{bmatrix} 1 & \mathbf{Q}(n-1) \end{bmatrix} (e(n)\mathbf{u}_1 - \mathbf{X}(n)\tilde{\boldsymbol{\theta}}(n)) = \begin{bmatrix} e(n) & 0 \\ 0 & \vdots \\ 0 & -\begin{bmatrix} \mathbf{x}^T(n) & 0 \\ \lambda^{1/2}\mathbf{R}(n-1) \end{bmatrix}$$

- If $\mathbf{R}(n-1)$ is known, the triangularization at time n can be completed by introducing zeros into the locations occupied by the most recent vector $\mathbf{x}(n)$.
- This is achieved by an $n \times n$ orthogonal matrix $\hat{\boldsymbol{Q}}(n)$

$$\hat{\boldsymbol{Q}}(n) \begin{bmatrix} e(n) \\ 0 \\ \vdots \\ 0 \end{bmatrix} - \hat{\boldsymbol{Q}}(n) \begin{bmatrix} \boldsymbol{x}^{T}(n) \\ \bigcirc \\ \lambda^{1/2} \boldsymbol{R}(n-1) \end{bmatrix} \tilde{\boldsymbol{\theta}}(n) = e(n) \hat{\boldsymbol{q}}_{1}(n) - \begin{bmatrix} \bigcirc \\ \boldsymbol{R}(n) \end{bmatrix} \tilde{\boldsymbol{\theta}}(n)$$
(14)

where $\hat{\boldsymbol{q}}_1(n)$ is the first column of $\hat{\boldsymbol{Q}}(n)$.

• (14) can be performed using Givens rotations, such that

$$\hat{\boldsymbol{Q}}(n) = \hat{\boldsymbol{Q}}_N ... \hat{\boldsymbol{Q}}_1$$

with

$$\hat{oldsymbol{Q}}_k \; = \; egin{bmatrix} \cos arphi_k & -\sin arphi_k \ & oldsymbol{I}_{n+k-N-1} \ \sin arphi_k & \cos arphi_k \ & oldsymbol{I}_{N-k} \end{bmatrix}$$

• The proper selection of the rotation angles $\{\varphi_k\}$ will annihilate the elements of $\boldsymbol{x}^T(n)$ appearing in (14).

• The term $\hat{q}_1(n)$ in (14) in closed form is

$$\hat{q}_1(n) = \begin{bmatrix} \prod_{k=1}^N \cos \varphi_k \\ \mathbf{0} \\ \mathbf{g} \end{bmatrix}$$

where $\boldsymbol{g} = [g_1..., g_N]^T$, $g_k = \sin \varphi_k \prod_{i=1}^{k-1} \cos \varphi_k$.

• The parameter update $\tilde{\boldsymbol{\theta}}(n)$ is then solved from

$$e(n)\mathbf{g} = \mathbf{R}(n)\tilde{\boldsymbol{\theta}}(n)$$

using back substitution.

• An useful scaled algorithm can be obtained considering the QR decomposition of $\boldsymbol{X}(n)$

$$Q(n)X(n) = \begin{bmatrix} \bigcirc \\ R(n) \end{bmatrix}$$

• Because Q(n) is orthogonal, we have

$$\boldsymbol{R}^{T}(n)\boldsymbol{R}(n) = \boldsymbol{X}^{T}(n)\boldsymbol{X}(n) = \sum_{k=0}^{n} \lambda^{n-k}\boldsymbol{x}(n)\boldsymbol{x}^{T}(n)$$

• If x(n) is stationary,

$$n \xrightarrow{\lim} \infty E\{\mathbf{R}^T(n)\mathbf{R}(n)\} = \frac{E\{\mathbf{x}(n)\mathbf{x}^T(n)\}}{1-\lambda}$$

- Then for $\lambda \to 1$, the elements of $\mathbf{R}(n)$ can become large.
- Overflow in $\mathbf{R}(n)$ can be avoided considering in (13) that if $\{\mathbf{x}(k)\}_{k=0}^n$ and e(n) are similarly scaled, the LS is left unchanged.
- From (15) an appropriate choice is $\sqrt{1-\lambda}$.

Examples

- An (adaptive) signal-cancelling application, with two taps!
- $x(n) = \sin w_0 n + \nu(n)$ with $E\{\nu^2(n)\} = r$,
- $\bullet \ y(n) = 2\cos w_0 n \ ,$
- $\bullet \ \hat{y}(n) = \theta_0 x(n) + \theta_1 x(n-1),$
- \bullet $e(n) = y(n) \hat{y}(n)$
- $\mathbf{R}_x = \frac{1}{2} \begin{bmatrix} 1 + 2 r & \cos w_0 \\ \cos w_0 & 1 + 2 r \end{bmatrix}$ and $\mathbf{p} = 2 \begin{bmatrix} 0 \\ -\sin w_0 \end{bmatrix}$.
- $\bullet \ \theta^* = \mathbf{R}^{-1}\mathbf{p}.$
- $E\{e^2(n)\} = (\frac{1}{2} + r)(\theta_0^2 + \theta_1^2) + \theta_0\theta_1\cos w_0 + 2\theta_1\sin w_0 + 2\theta_1\cos w_0 + 2\theta_1\sin w_0 + 2\theta_1\cos w_0 + 2\theta_1\sin w_0 + 2\theta_1\cos w_0 + 2\theta_1\cos$

Figure 21:

