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2 Adaptive FIR filters

Some algorithms and their limitations

e Wiener filtering.

e Stationary case description (steepest descent, quasi-Newton).
e Traditional updating schemes: LMS, RLS, QR.

e Convergence in the mean and mean square error variance.

e Convergence speed - correlation matrix conditioning trade off.

e Different realizations.
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In a general framework, the Mean Squared Error (MSE) E{e?(n)}, has the
following quadratic form:

E{*(n)}=p-260"p+6'"R,0

where R, > 0 and p and p are assumed to be known in an ideal setting or,
from a practical implementation point of view, some suitable estimates are
at hand.

z(n) Adaptive C e(n)
Filter ~

Figure 9: Adaptive filtering general framework.
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2.1 Wiener Filtering

2.1.1 Optimal filtering

e Problem 1: Inverse filtering: To design H(z), the input (observable
signal) x(n) has noise and the reference is not available. The idea is to
design H(z) so that y(n) = H(z)x(n) approximates y(n).

e Problem 2: Direct filtering or modeling: y(n) is the not observable
output of the filter to design H(z). The idea is to design H(z) so that

~

y(n) = H(z)x(n) approximates y(n).

(n)

|
y(n) Unknown A~x(n) | Optimal | §(n)
o/

system ] filter
@)
va(n)
Unknown y(n)m
system p

Optimal y(n)
filter

b)

Figure 10: a)lnverse filtering and b) direct filtering or modeling
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e Assumption: z(n) and y(n) jointly wide sense stationary and have zero
mean and are uncorrelated with the disturbance.

e The degree of approximation is measured by the Mean squared error,

E{e*(n)} = E{(y(n) - §(n))*} (3)

e Second order statistics known, i.e.,

p(k) = E{y(n—k)x(n)}
r(k) = E{x(n—Fk)a(n)}
p = E{y*(n)}
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2.1.2 The inverse filtering problem

x(n) = s(n) + vi(n), y(n) = s(n) (s(n) recoverable signal). Since y(n) =
Y h(k)x(n — k), three cases:

e Non causal case: x(n — k) known for all &, no constraints on h(n), i.e.,
[B(n)]|* < oc.

e Causal FIR case: x(n — k) known for 0 < k < n, so h(k) =0 for k <0
and k& > n.

e Causal IIR case: z(n — k) known for £ > 0, so h(k) =0 for k£ < 0 and
[B(n)]|* < oc.

Ele*(n)] = E[y*(n)] - QZ];h(k)E[y(n)x(n — k)]
+ Zk:ZJ: h()h(k)E[x(n — k)x(n —1)]
= p— 2%:]1(]{7)17(]{7) + Zkzzl:h(k)h(l)r(l — k)

or

ry(k) = ry (k) = ryy(k) +ry (k)

p(k) — Zl:[h(l)p(l + k) + p(DR(l + k)]

+ ZIIZ h(Dr(L+k — j)h(j)

Se(e") = Sy(e’) = Sy’ ) H* (') — Sy, (7 VH () + Sp(e") | H* ()]

Lo |2 W
Sya(e") Sy ()
Sp(eiv) Sp(eiv)

— H(ejw) _

S.(e!) + [Sy(ejw) -
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e the non causal case: S, (¢/V) = Sy(e/V) and S,(e/) = S,(e/V) +

S, (e/), ie.,

e the causal FIR case:
Bl (] = B[] -2 3 Wt Ely(na(n — 1)

+ g: g: h()h(k)E[x(n — k)x(n —1)]

k=0 =0
= o= 23 MR + X 3 BRI~ k)
k=0 k=01=0
that is minimized for
pk) = nzjijor(k —n)h(n), or

0 = Ele(n)x(n—~Fk)], for 0<kE<N
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Let consider two cases:

— Filtering (basic equalization): if z(n) = s(n) + v(n) and y(n) =

s(n— N), then (r(n) = r.(n) 4+ r,(n) and p(n) = ry(n — N)):
[ n(0) ] [0 ]
R, +R, h(}V) - R, 1
_ h(QSN) | _ o |

whose solution is a linear phase FIR filter (h(n) = h(2N —n), n =
0.1,...2N.

— Prediction:

x Forward: if §(n) = X4, hpa(n — k) and y(n) = x(n), then:

r(l)  r(2) r(V) h(1) r(1)
r(2) r(1) r(N —1) h(-2) _ r(-2)
FN) r(N=1) - (1) || h(N) F(N)
x Backward: if j(n — N) =i, grao(n — k+1) and y(n) = x(n —
M), then:

r(l) (2 r(V) g(1) r(V)

r(2) r(1) - r(N —1) g(-2) _ T(Nl— 1)

AN) AN 1) ] L) ()

The solutions are related by:

g = hy_p fork=1,..N -1
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e the causal IIR case: Here, in a similar form that for the FIR case,
except for N — oo,

p(k) = 3 r(k = mh(n).

is the optimal condition, for 0 < £k < oco. A frequency domain solution
is obtained if

— x(n) = G(2)u(n), u(n) white noise, i.e., S,(¢/*) = 1 and G(z) is

ivertible.

—y(n) = F(z)u(n ) v(n), v(n) colored noise uncorrelated with u(n),
i.e., Sy (e/) =

then with S, (e/V) and S,(e/") respectively,




2.1.3 The direct filtering or modeling problem
Here y(n) = H(z)x(n) + 1u(n), j(n) = H(z)z(n).

e In the FIR case,

y(n) = box(n)+bhzx(n—-1)+..+byz(n—N)
= 0'x(n)

where 8 = [by...by]" and x(n) = [v(n)...x(n — N)]T.
Then in an stationary environment,
E{*(n)y=p-260"p+6'"R,0

where R, = E{x(n)z’(n)} and p = E{x(n)y(n)} are known.
A quadratic function of 8(n) with

_0E{e*(n)} _ [3E{62(n)} 0E{e*(n)} 3E{62(n)}]T
06 dby ob, T Oby
- 2p+2R,0=0

v

then the MSE is minimized when
90 — Raz_lp

Note also that

= E[2e(n) ag(;)]

= —2F[e(n)x(n)] =0

_ 0B{¢(n))

v 00

i.e., the normal equation.

27
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z(n) [ I :/\ €f(n2
@)

z(n) ! e :/\ €b(n2
b)

Figure 11: Relationship between prediction and whitening filtering. a) forward predictor
and whitening filter, b) backward predictor and whitening filter.

e Whitening a forward prediction filter: with ef(n) = y(n)+ >0, ary(n —
k), find A(z), constrained to be a monic FIR filter (a(0) = 1).

r(0) r(1) r(N) a
r(1) r(0) - r(N —1) a(l) _ 0
FN) H(N=1) <o o(0) || a() 0

The N-order (forward) prediction filter and the N 4 1-order whitening
filter are related by Ay, 1(2) =1 — 27 Hy(2).

e Whitening a backward prediction filter: with e,(n) = y(n—N)+>1_; bry(n—
k+1), find B(z), constrained to be a monic FIR filter (6(0) = 1). Then

ﬁ
~
e}
~—
ﬁ
~
—
~—
ﬁ
~
=z
—
o @
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An important property: the outputs collection of whitening backward
filters of orders 1 to NV are orthogonal, i.e.,

tfm==F
Elepe’}y = {%k i;m;ék

where 3, = E{(e})?}.

This property can be used to obtain an useful decomposition (low Cholesky
in this case) of the correlation matrix R,

DL = diag[ﬂo,...,ﬁ]v]
= Ele)e)} = BE{Lxx' L")
1 0O 0 0
by(l) 1

by(N) - bi(1) 1
R = LD;'L”

A similar factorization can be obtained but related to the whitening
forward filtering, i.e., (upper Cholesky)

R™' = UD;'U"

1 al(l) CLN(N)
I — 0 1 - ay(N-=1)
ay(1)
0 0 .- 1
D, = diag|ay,...,ay]

where can be shown that o = ;.
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2.2 Optimization in the ideal setting

2.2.1 Newton algorithm

O(n+1) = 6(n)— uR,'V(n)
= O(n)+uR; ' (=2p+2R.0(n)) = (I —2uI)8(n) + 216,

if ;1 =1/2 the Wiener solution is reached in one step!.

2.2.2 Steepest Descent algorithm
Using V(n) =2(R,6(n) — p), then

O(n+1) = 6(n)— pV(n)

With (n) = 8(n) — 0.,

On+1) = (I -2uR,)0(n)
= (I -2pR,)"" 6(0)

Since R, > 0, R, = QAQ", where Q is an orthogonal and A is the
diagonal eigenvalue matrix. Then with ¥(n) = Q7 8(n),

E{d(n+1)} = [I- Al B {(n))
— - pA] {9 (0))

(1= 2pXp)" ! 0 e 0
_ n+1 : .
- O : 9(0)
0 0 (1= 2pAy)"+

Then, SD algorithm converges to the Wiener solution if, for n — oo, p satisfy

0<pu<

ATTLCll‘

where A4 18 the maximum eigenvalue of R,.
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2.2.3 Conjugate direction algorithm

Consider d;, j =0,..., N, that verify

diR,d, =0 ifj#k
as conjugate directions. Then:

Theorem: The sequence

O(n+1) = 6(n)+.d,

where v, = —(ngxdn)_ld;fV(n) and V(n) = 2(R, 6(n) — p)
converges to 8, = R, 'p after N + 1 steps, i.c., 8(n) = 8,.

Assuming to minimize the MSE with 6(n) constrained in 6(0) + Dy,
where Dy = [dyd; ...dy_1]. Then (6(n)—8,) is given by the R, -orthogonal
projection of (6, — 8(0)) onto Dy, i.e.,

6(n) = 6(0)+ Dy(DYR.Dy) 'DR.(6, — 6(0))
= 0(0)+ Y du(d! R,dg) dl R, (8, - 6(0))

But d;{R$90 = d;{R$9(l€) so that with p = R, 0, is possible to verify

diR.(0,—6;) = —d;V(k)

that serves to justify the gain ~;.
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2.3 Updating algorithms

Two important properties related to estimation (updating) algorithms are in
order:

e An estimate is unbiased if E{O(n)} =0,.

e An estimate is consistent if 8(n) — 0, as n — oc.

Since second order statistics are not usually available, some simplifications
in the ideal method are necessary.

2.3.1 The Least-Mean-Square (LMS) algorithm

When the gradient V is not available, a suitable estimate is V & —2¢(n)x(n),
the LMS algorithm

O(n +1) = 8(n) + p(n)e(n) (4)

where ¢t > 0. As can be expected by the analyisis of the ideal SD algorithm,
this parameter is related to convergence speed and stability of the algorithm.
Some useful variants

O(n+1) = 6(n)+ px(n)sgnfe(n)] Sign Error
O(n+1) = 6(n)+ pusgnjz(n)] e(n) Sign Data
O(n+1) = 6(n)+ usgnfx(n)] sgnle(n)] Sign Sign



33

2.3.2 Convergence in the Mean and Error variance of the LMS

Using some simplificatory hypotesis, and by defining 8(n) = 8(n) — 8, and
rewritten (4) as follows

O(n+1) = [I - pa(n)a’ (n)] 6(n) + pz(n)(y(n) — x" (n)8,)  (5)
then

E{6(n+1)} = E{[I — px(n)z" (n)| 6(n)} + nE {x(n)(y(n) - CcT(n)‘5’o)(}6)
Using the hypotesis

E{B0n+ 1)) = [T - pR.) B (90} "

Using R, = QAQ" (Cholesky) and pre-multiplying (7) by Q” and defin-

ing

9(n) = Q" 6(n) (8)

is possible to obtain

E{d(n+1)} = [I-pAlE{d(n))
= [I—uA"" E{9(0)) (9)

Then, in order that 8(n) converge in the mean to the Wiener solution

0<p< (10)

ATTLCll‘
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Since the gradient is noisy, some residual MSE after convergence can be
expected. This residual error is called Excess in the MSE and is defined
at time n by

AE(n) = E(n) = bpin = E{0 (n)R,O(n)}
— E{tr(R,6(n))8 (n)}
= tr (E{R.6(n)8 (n)})

where tr(AB) = tr(BA) was used.
Using this, and after some not trivial intermediate steps, it is possible to
shown that

oy Zimg Ak

1%

Ag(n)

1= pSpg M
_ _poytr[R]
1 - ptr[R]

where 02 = E{v?*(n)}. Finally, for n — oo

poitr|R]

Eewe = nll_{l(;lo Af(n) = Ttr[R]

and assuming p small enough,

Cewe = MOZtT[R] = :“(N+ 1)03092

Note that &, is a relative quantity. In order to compare different algo-
rithms a more suitable parameter is the Misadjustment:
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2.3.3 MSE transient

The essential drawback related to the LMS algorithm is that convergence
speed depends directly on the correlation matrix eigenvalue spread.
Using the expression of the MSE at time n it is not hard to show that

EN) = Eppin + B{D (n)AD(n)}

N -
= gnnn'+ 2: Akﬁ%(n)
k=0

N .
= Eonin + kzo Ak (1 = )™ 9%(0)

Then the transient that characterizes the behavior of the MSE convergence
isrelated to N+1 geometric ratios, r, = 1—2uM;. Using the usual exponential
envelope rp =1 — 2uA =1 — %, then

1
2#/\k

112

Tk

with £ = 0,..., N. This is the time constants related to parameter conver-
gence. For MSE convergence speed

12
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2.3.4 The Normalized LMS algorithm

e To optimize the convergence speed: a time variant convergence factor
p(n) in the LMS algorithm.

e Consider the difference between the instantaneous squared error e?(n)
and the squared error obtained by 6,(n) = 6(n)+A8(n), given by €2(n).

e Then

Ae(n) = éX(n) — ¢

e Using the Af(n) obtained from the LMS algorithm and by minimization
of the previous equation with respect to p(n),
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2.3.5 The Transform-Domain LMS Algorithm

Atk =

Transform

y(n)
Figure 12: The transform domain adaptive filter

e Convergence speed is related to different principal axes length of the
MSE surface countours.

o If these countours are circular the optimum situation is at hand. This
can be achieved only if the eigenvectors of the R, matrix are known.

e The MSE surface is changed by a coordinate transform, &(n) = Tx(n)
where TT? = I, or

§ = F{A(n)} = Euin + 6 E{#(n)a"(n)}
where 0 = é(n) —8,. Then

£—¢m = 0 TR,T" 6

that represent a rotation of the parameter space related to the direct
form FIR filter.
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e The intersection of the different MSE contour with the i-th space pa-
rameter coordenates is & — &, = {TRQETT} Z.Z. 0;.

e For an hypersphere it is necessary that |6;] = |6;| for all (4, j).

e This conditions can be achieved, at least approximately, using an scaling
factor

TR, T"|. = E{&{(n)} = 6]

e The updating equation of the Transform Domain LMS algorithm is the
following

O(n+1) =6(n)+ pA E(n)e(n) = O(n) + pA~'Tx(n)e(n)

where A = diag [63,...,6%] and 62(n + 1) = (1 — py)67(n) + p.22(n),
with i, a small constant.

e Two suitable transform for this algorithm are the Discrete Fourier Trans-
form (complex) and the Discrete Cosine Transform (real), given by

2 (2k+1)

i) = g ek - mes (mm)
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2.3.6 The Quasi-Newton algorithm

e Higher complexity than the LMS but with fast (initial) convergence
speed using an estimate of R, .

e A possible algorithm is the following

O(n+1)=06(n)+ pP(n+1)x(n)e(n) (11)

where

P(nt1)= (;) (P(n) _ P(m)z(n)a’ (n)P(n) ) 12)

1—p 1—;/1 + T (n)P(n)x(n)

e P(n-+1) represents an estimate of R;l at time n 4 1, in this case using
the matriz inversion lemma. This algorithm is called Quasi-Newton.
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2.4 Other algorithms

2.4.1 The RLS algorithm

Assuming a linear regressor model:

N
y(n) = > ffe(n — k) +v(n)
k=1
The RLS algorithm estimates the 8, parameters by minimizing

W) = 3 3 )

where e(n) = y(n) — 8" (n)xy(n). The well known recursive solution of this
problem is

O(n) = O(n—1)+ kx(n) (y(n) — HT(n — 1)33N(n))

where

ky(n) = RyL(n)zy(n) n>N
Ry-i(n) = Ry-i(n—1)+ay(n)zy(n)
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2.4.2 The fast RLS algorithm

e The fast RLS will be derived by close relationship with the conjugate
direction algorithm and the forward and backward prediction filters.

e The choice of two particular conjugate directions is essential for the
present derivation of fast RLS algorithm. These conjugate directions are
related to the forward and backward prediction filter coefficients
as discussed below.

e The fast RLS algorithm is related to the Kalman gain updating (in time)
kKn(n—1) = ky(n).

e This updating can be seen as composed of time update and order update.

L. ky(n—1) = kyy1(n),

2. Kyy1(n) — ky(n).

e Due to the shifted structure of the regressor xy(n),

e(n) ] _ [xmm ]

Tyi(n) = [a:N(n—l) (n—N)

where wN—l—l,l:N(n) = ch(n — 1) and 33N+1’0:N_1(n) = ch(n)

e Then, assuming that &y (n) =0 for n <0,

RN_l(n - 1) = RlzN(n) RN_l(n) = R();N_l(n)

where Ry.y(n) and Ry.y_1(n) are the lower right and upper left corner
of Ry(n), respectively.
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e Kalman gain at times n — 1 and n can be written

kn(n—1) = Riy(n— 1@y n(n)
ky(n) = Ryy_(n)oyiion-1(n)
Kyi(n) = Ry'(n)xyi(n)

e Following the first step (time update) above, the problem can be stated
has: given ky(n — 1) and ky(n), find Ky41(n) as the solution to the
N + 1-dimensional problem

Minimaize
2=k (

1
3# R}z — @l (n)z)

e This can be achieved with a conjugate direction algorithm with

dy = [1 ay(n)]"
dyV(n) = [ ajy(n)]eysi(n) = el(n)
diRy(n)dy = &4(n)

where ay(n) are the coefficients of the forward prediction filter, f]j;(n)

1s an estimate of the least square forward prediction error and efv(n) 18

the aposteriori forward prediction error.

e Then
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e For the second step (order update), i.e., Ky11(n) — Kx(n), the problem
can be stated has: given ky(n — 1) and ky(n), find kKy41(n) as the
solution to the N 4 1-dimensional problem

Minimize 1
z=kKy41(n) (§zTRN(n)z — w%H(n)z)

e This can be achieved using a conjugate direction algorithm with

dy = [by(n) 1]"
dyV(n) = [by(n) Nay(n)=ey(n)
dyRy(n)dy = &(n)

where by (n) are the coefficients of the backward prediction filter, £4(n)
1s an estimate of the least square backward prediction error and e?v(n) 18

the aposteriori backward prediction error.

e Using this results,

svan) = [0 L [P0 @) i

e Since the required solution is the Kalman time update, K y(n) is obtained
as a function of Ky 1(n) from the previous equation.

e The complete fast RLS algorithm requires 2 CD algorithms for the time
update of the Kalman gain and 2 CD algorithms to obtain:

— a) the time update of the prediction filter coefficients and
— b) the parameter updates 8(n).
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2.4.3 QR decomposition based RLS algorithm

o If the standard RLS algorithm

n

O(n+1) = 8(n)+ kZ:IO/\”_ka:(k)a:T(k) x(n)e(n)

where e(n) = y(n) — 8" (n)x(n) (£(n) = xy(n)) and 0 << A < 1 is the
forgetting factor, is rewritten as

D [t
- ) 13
0 A22T(0)

where é(n) =0(n+1)—06(n).

e Then e(n)u; — X(n)é(n), where u; is the unit vector with a ”1” in the
first position, and

X0) = | oy |

o If an n x n (with n > N + 1) orthogonal matrix Q(n — 1) is known at
time n — 1 such that

Qn-1)X(n—1) = [R(nO— 1)]

where R(n — 1) is an upper triangular matrix of dimension N x N

(dimension of 8(n)).
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e Then
6((;%) ()
1 0 — _
" gamy | e = X b)) - g VERD-

o If R(n—1) is known, the triangularization at time n can be completed by
introducing zeros into the locations occupied by the most recent vector

e This is achieved by an n x n orthogonal matrix Q(n)

() .

| IR N

an| | [—am| o e = -] 2 |6
(') /\1/2R(n—1)

where q,(n) is the first column of Q(n)

e (14) can be performed using Givens rotations, such that

Q(n) = Qy..Q,
with
COS Vi — sin @y,
. TN
Q. = | . "
S Yy, COS Pk

e The proper selection of the rotation angles {y;} will annihilate the ele-
ments of &’ (n) appearing in (14).
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e The term @,(n) in (14) in closed form is

[T €oS 9
g

where g = [g1..., gn]", gr = sin o [157{ cos ¢y,

e The parameter update é(n) is then solved from

using back substitution.

e An useful scaled algorithm can be obtained considering the Q)R decom-
position of X (n)

e Because Q(n) is orthogonal, we have

RT(n)R(n) = X ()X (n) = kzzo Ntz (n)2T (n)

o If x(n) is stationary,

lim E{RT(n)R(n)} _ E{a:(n)ccT(n)}

e Then for A — 1, the elements of R(n) can become large.

e Overflow in R(n) can be avoided considering in (13) that if {x(k)}]_,
and e(n) are similarly scaled, the LS is left unchanged.

e From (15) an appropiate choice is /1 — A.
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Examples

An

(adaptive) signal-cancelling application, with two taps!
e v(n) =sinwon + v(n) with E{v?*(n)} = r,

n

®
<

(n) =2coswgn ,
o §(n) = Boz(n) + byz(n — 1),
(n) =y(n) = y(n)

o R, — 14+2r coswy and p = 2 .O -
coswyg 14+2r — sin wy

e 0" =R !p.

N | —

o E{e*(n)} = (5 + r)(62 + 67) + 0b; cos wy + 26; sinwg + 2
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MSE surface
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MSE SD algorithm
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MSE Conjugate Gradﬁent algorithm
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MSE Mewton algorithm
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MSE LM algorithm

123.6
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MSE LMSMewton and LMS algaorithms
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MSE LMD, LWMS/MNewton and Quasi-Mewton algorithms

)



Figure 21:
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MSE Quasi-MNewton Lattice algorithm
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