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Adaptive IIR Filters

Some motivation from system identification theory

e A general prediction model for the system identification (direct filtering)
problem is discussed. A characterization is also introduced, mainly that
related to a possible optimal solution, i.e., Mazimum Likelihood estimate.

e A brief discussion of system identification methods as possible candidates
to be used in adaptive IIR filters is presented.

e An also a brief review of the more elaborate optimal problem: inverse
casual IIR Wiener filtering is included.
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e In a different way of what happen with FIR filters, causal stable
Wiener IIR filters to solve the problems of inverse or direct
filtering have not a closed form.

e In particular, inverse Wiener causal IIR filters are more restricted than
direct causal IIR filters.

e That is the main reason that in general justify that almost all adaptive
IIR filters known are mainly addressed to solve the direct causal filtering
problem and not the inverse causal IIR problem.
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Characteristics

e FIR Adaptive Filters

— Stability guaranteed.
— Unimodality of the performance criterion (MSE).
— Easy stability conditions for the updating algorithm.

— High complexity for modeling real world systems.
e IIR Adaptive Filters

— Low complexity to model real world systems.
— Multimodality of the performance criterion (MSOE).

— The IIR adaptive filter requires stability check: exponential stability
is not trivial.

— Stability of the updating algorithm must be guaranteed.

Aspects to study (and improve!)
e Modeling capability.
e Computational complexity.

e Convergence speed.
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3.1 System identification and adaptive IIR filtering

: B(z) _:" (n)
A(z) +
_|_
(n) eo(n)
/ O
- |
~ |
| Bu) y(n) |
Ap(2) |
|
| |
L ]

Figure 23: System identification configuration

e In system identification asymptotic properties for the estimators are as-
sumed using a stationary environment and a decreasing convergence
factor.

e The models of system identification include noise parameters.
e Lines followed:

1. Stochastic approximation.

2. Pseudolinear regression or Model reference methods (Pseudolinear

regression, PLR).

3. Modification of off-line methods (Recursive prediction error RPE,
Recursive least squared RLS).

Outline:

e Setup of a general model set that is not function of data: prediction
error definition.

e Relationship between Maximum Likelihood (ideal properties pursued)
and prediction error optimization.

e Conditions of Identifiability of the general model set and the input.
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3.1.1 Some simple model descriptions

In system identification the linear differences equation (ARMA model) is

often used
y(n)—ayin—1) — ... —ayy(n — N) =
bor(n) + ... + bya(n — N) + v(n)
A(Qy(n) = B(q)u(n) +v(n)
then

y(n) = 8" 6(n) +v(n) = j(n/0) +v(n)
where: 8 = [ay ... ay by ... by]! and §(n/8) is a one-step prediction of y(n).

If the noise can be modeled, it is possible the utilization of a more complete
ARMAX model,

v(n) = Clg)r(n)
Alg)y(n) = Blg)u(n)+ C(q)r(n)
6 = [a1 e AN bo bN Co ...CM]T

In general, the more complete model described by an state variable descrip-

tion,

x(n+1l) = Ax(n)+bu(n)+vi(n)
y(n) = cx(n)+ du(n)+ y(n)

is given by the Kalman filter.
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3.2 A general prediction model set

o Let S, a structure of models,

S:y(n) = Go(q)x(n) + H,(q)r(n)
Golq) =532 000" Holq) =14 332 hig™

e The model set,
y(n) = Glg,0)x(n) + H(g,0)r(n)

with f,.(z, ) the probability density function (pdf) of r(n) (white noise),
and 8 € Dy, of dimension 2V,

e Usually the dynamics of the transfer function and the perturbation have
different orders.

e For system identification (and adaptive filters) it is important that G(q, 0)
independent of H(q,6), i.e.,

QZ[PW]T Dy =D, xD, peD, nebD,
then

G(q,0) = Glg.p
H(q,0) = H(q,n

~—
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3.2.1 Model set construction: prediction
To design the noise prediction model some assumptions are necessary,

e Noise model invertibility (condition on the power spectral density of the

noise). If v(n) = H(q)r(n), then r(n) = H(q)r(n) with ﬁ(q) = ﬁ

e One-step predictor of v(n),

v(n) = ki::()hkr(n —k)=r(n)+ é hgr(n — k)

= r(n)+m(n—1)
Assuming v(k) known for £ < n — 1 this is leads to the prediction of
v(n).

e With r(n) white noise, P(z < r(n) < x4+ Ax) 2 f.(x)Az. And using
the pdf of v(n)

fo(x)Ax = P(x <wv(n)< "
= Pz <r(n)+m(n—-1) <z+ Ax)
= Plx—m(n—-1)<r(n)<z+Azx—m(n—-1))
= fi(lr —m(n—-1))Azx

e In general we adopt the (conditional) mean of f,(z), i.e.,

vin/n—1) = m(n—-1)=> r(n—Fk)
k=1
note that this estimate minimizes

min

v E{(v(n) = #(m)} = #n/n—1)

e Finally

bnfn—1) = [H(g) -1 r(n) = [1 -



The output prediction design follows this steps

e Objective: prediction of y(n) = G(q)x(n)+ v(n), based on

e Then

y(n/n—-1) = G(¢)z(n)+ ﬁ(n/n — 1)_

= G(q)z(n)+ 1—% v(n)

= Gla)eln) + |1 = g5 o) = Glajetn)
1 1

. @G@)x(nwll %] y(n)

or

0/8) = a0t + 1= gy

that not depends on f,.(x,6).
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3.2.2 Model representation: transfer functions

e Associating suitable transfer functions to the model set,

Aan) = F8etn)+ 5

e Then, the related predictor is

infn—1) = o070

B(q) - FIR
A(q), Blg) —  ARX
A(q),B(¢9).C(¢9)  — ARMAX
A(9),C(q) —  ARMA
A(¢),B(¢),D(¢) — ARARX
A(q), B(q),C(¢). D(¢) — ARARMAX
B(q), F(q) — output error
Some special cases
o Fquation error model
B(q) 1
D=4 T=a0
e Pscudolinear regression model
B(q) 1— A(q)
G = —— H =
0=cry 0=
o Output error model
B
G(g) = Bl (¢)=1
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3.2.3 Maximum Likelihood and prediction error

e Maximum Likelihood concept: Given a function that depends on the
data and the unknown parameters (the Likelihood function), the esti-
mate is associated to the parameter that maximizes this function.

e For independent observations

— Likelihood function: conditional pdf of the observations (product of
partial conditional pdf, known a priori).

e For sequential observations

— Computation of conditional pdf at time n 4+ 1 based on observation
up to time n. Then, similar to a prediction problem, i.e., the Like-
lihood function is obtained as a product of conditional pdf in the
prediction errors.

o We saw that for prediction error methods: the prediction model and the
criteria to be minimized are independent of the statistics of the signal
involved. The same result is expected for this method.

e The Maximum Likelihood method: Let y a random variable with
pdf p(y, 8), 6 unknown. To estimate # from observation y, choose ¢ that
maximizes L(6,y) = p(y,0)
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e Then

— For independent observations

L6, y(1)..y(N)) = p(y(1),)p(y(2),0)...0(y(N),8). For the Gaus-

sian case:

= e 202

p(y,e) - 0\/%

where m and ¢ depends on 6. Then

-N N s ,
L(evy(l)y(N)) = (O 27T) e_ﬁzi:ﬂy(l)—m]

or

1N N

—logL = — > e(i)"+ Nlogo + ?logQW
0% i=1

where e(i) = y(i) — m. Since maximization of L is equivalent to the

minimization of —log L,

x If o is (a constant) known, then is equivalent to minimization of

% If ¢ 1s unknown: first minimization of V. Second: estimate

~9 2
0° = lenV.
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— For sequential observations

« Let {y(¢)} a sequence of observations and y, a vector of the last

N.

x Then L(0,yy) =p(yy/0).

« But p(yn/0) = p(y(N)/yn_1/0)p(yn_1/9).

+ Then, in general L(6. yy) = p(y(N)/yn_1)-.-p(y(2)/y(1)p(y(1)).

(y=9)* p .
207, the conditional mean is

« I p(y(n)/y,_1) = 1276

90, y,-1) = E{y(n)/y,_.}

and the conditional covariance

o(0,y,_1) = cov{y(n)/y,_,}

x Finally

—log L(B;yy) = %g: [(e(i)/a(i))* + log o (i)] + %log 27

where e(i):{ uy-m =t

% If o is known, this is equivalent to minimization of V = § =X e(i)?.

If 0(7) are unknown similar procedure to the case of independent
observations.
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e Then: interpretation of y(n) as the prediction of y(n) based on data
up to time n — 1.

e Then, Prediction error principle: postulate a model to determine
y(n) as a function of y(n) and #. Then adjust # in such a way that the
criteria is minimum.

e Some properties of Maximum Likelihood method:

— For independent observations:

1. Consistent.
2. Asymptotically Normal.
3. Asymptotically efficient.

— For sequential observations

1. Characteristics dependent of the known dynamic of the model.
2. Consistent and efficient for the general ARMAX model.

e Based on the prediction error minimization as general criteria

V6) = % 3 ()= nfn = 1)

the obtained estimate p is independent of n and H(g¢,7n), in such form
that asymptotically G(q,p) — G,(q).
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3.2.4 Model Identifiability: sufficient and insufficient order

e Definition: A model structure M is globally identifiable in 6* if M (#) =
M(6%), 8 € Dy, implies that # = 6* for almost all 8* € D .

e In particular, if this condition is satisfied for all * € Dy, then M is
globally identifiable in strict from.

e For the proposed general structure of models, M is globally identifiable
in ¢*, if and only if

G(z,0) =G(z,0") and H(z,0)= H(z,0)

for almost all z, this implies that 6 = 6*.

e Theorem: For the proposed structure of models, the global condition
of Identifiability is guaranteed in ¢* if and only if

1. No common factors exist in A(q), B(q) and C(q).

2. No common factors exist in B(q), and F(q).

3. No common factors exist in C'(q), and D(q).

4. If n, > 1, no common factors exist in F(q), and D(q).
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For the particular case of the output error model

e Notation: B(z) = z™B(z), B(z) = b1z '+ ...+ b,,, F(z) = z2F(z),
F(z)=fizvt+ .+ fnf, then the analysis is independent if B(z) or
F(2) have zero coefficients b, or f,,.

e Then

G(z,0") = G(z,0)=

or, as consequence

F()B'(2)—F'(2)B(z) =0 (15)

° F*(z) is a ny-order polynomial, then has ny zeros «;, such as

fore=1,...,ny.

o If F(2) and B'(2) are coprime, i.e., B'(a;) # 0 for i = 1,...,ny, then to
satisfy (15), the following condition must be verified

for i = 1,....,ny. But this implies that B(z) = B'(z), such as finally
6 = 6.



o If F*(z) and F*(z) have a common factor such as

this leads to

(2) = (2)F(2)
(2) = (=)B1()

!

() = B(2)
() = B(2)

()

()

=
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for v(z) and ((z) arbitrary in (15). Then the output error prediction
model is not globally identifiable in 6*.
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e Definition: A structure M, is in My, M| C My if Dy, C Dpy,, and
the mapping is obtained constraining M in order that 6 € D yy,.

Example: My: model set of order m, M model set of order n, such as
m < n, then M; C M.

e With this definition, the ideal model is in structure M, if S C M, i.e.,
ng > ng, Ny > ng, ete.

e The conditions of global Identifiability of the previous theorem can be
rewritten as

Theorem: Let S with n?, n7, etc., polynomial orders (with all common
factors cancelled). Then & C M and 6 is globally identifiable, if and
only if

min(n, — ng,ny — nj,n. —n?) = 0.
min(ny — ng,ny —ng) =0,

min(n. — nS,ng —ng) = 0.

= =

If n, > 0, min(ny — n%,ng — ng) = 0.
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3.2.5 Model selection: persistent excitation

Let M and My two structures in M. A condition on the input data is that
it must allow the discrimination between M and M.

Let 6, € My and 6y € My, with ¢;(n, ;) the associated prediction error,
and G;(q) = G(q,6;).

Define

es(n) = (Golg)x(n) + Ho(g)eo(n)) —

Ae(n) = ej(n) — ey(n)

_AH (HQGl—HlGQ)x(n)

- HHY H\ H,

_AH HyG\ — HGy

— g Heea) + Gaa(n)) = (el

_ A—H ( )+(AHG2—H2G1+H1G2) ( )

= I es(n 7.1 x(n

. AH AHGy — HoGy + H|Gy

= 4 (G = Gaa(n )+H060(n)]+( = )x(n)

= - [{ac+ 226, - et + { S A0} et

Let E{v? (n)} = % ffTV(ejw)dw the power spectrum of v(n), then

V(e™) = |G X(e™) + AH(e™)[*
where A = E{e?(n)}.
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In our problem

2

B [, ”AG EAE R

where X\, = E{e%(n)}.

H2
9 0
—1 A, | d
H, ]“’

Because |H,(e/*)|* > 0 (noise model invertible), we consider the case where

E{Ae*(n)} =0, but AG(e/*) and AH(e/*) are not simultaneously zero.

If AH(e/%) = 0, then |AG(e?V)[2X(e?¥) = 0. Thus AG(e’¥) = 0, and as

consequence the models are identical (the data allows model discrimination).

Definition: x(n) with power spectral density X (e/*) is persistent
of order r if for all filter M,(q) = miqg™t + ... + m,q",

|M(e?) X (7)) =0 implies M, (e!*) =0

Because M(z71)M(z) could have r — 1 zeros in |z| = 1, then x(n) is

persistent of order r if X'(e/¥) # 0 at least in r points in —7 < 7.

In general x(n) is persistent if X'(e?*) > 0.
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For the output error model

B(z,6)
F(z,0)

Bl(z, Q)FQ(Z, 6) — BQ(Z, Q)Fl(z, 6)
Fl(Z, Q)FQ(Z, 6)

G(z,0) = AG(z,0) =

then

|B1Fy — BoF\|*X (/") = 0

Since AG(z) has order ny+n;—1, then if 2(n) is persistent of order ny+n;—
1, AG(¢?*) = 0 and the input data is sufficient to allow the discrimination
between the two models.

If numerator and denominator are of order r,

e x(n) is persistent of order 2r 4 1.

o X(e/¥) £ 0in 2r + 1 points.

e x(n) can be formed by r + 1 sinusoids, z(n) = ;1 uy cos(wgn), with

wk#wjvk#ja wi # 0.



78

3.3 A first look to recursive methods

3.3.1 Stochastic approximation

Based on the simple model

=T = Fletn = e 00e)) =

(note that if E{f(n)} is replaced by % >V f(n) the Least Squares estimate
is obtained).
We search the solution of the following problem. Given

E{Q(y(n),e(n)); = 0 (16)

obtain y(n) in such a way that the measured Q(y,¢) satisfy (16).
A recursive form of the solution is the following

y(n) = yn—1)+vn)Q(y(n —1),e(n))

where v(n) — 0 for n — oc.



Example: mean value estimator

Efe(n) -y} =

0
y(n) = yn—=1)+~vn)(e(n)—y(n—1)), with y(n)=1/n

2(n) = lile(k)

n —

Applied in the linear regression problem

6(n) = 6(n—1)+(n)e(n) [y(n) — " (O(n — 1)
some frequently used variants

e If v(n) =+, constant.

|2, normalization.

o If y(n) = 7./l (n)
o If y(n) =1/7_, |¢(k)|?, normalized and decrescent.

79
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3.3.2 Pseudolinear regression or Model reference methods

Using y(n) = ¢’ (n)0 + v(n) some not observable variables are introduced in
¢(n). This leads to more general models.

Example: LS method extended to ARMAX model

Define: ¢, = [y(n—1)..y(n—ny)x(n—1)..x(n—ny)r(n—1)..r(n—n,)]",
O(n) = [ay...an, by...by, c1...co, )T, then

y(n) = ¢,0+r(n)

this equation is linear in the parameters, then a possible method is RLS. But
¢, has some not observable variables that it is necessary replace for suitable
estimates.

Consider the following equality

r(n) = A(q)y(n) — B(g)x(n) — [C(g) — 1]r(n)
then

~

e(n) = A(@)y(n) = Blg)e(n) = [C(g) = Le(n)

and @(n) = [y(n — 1)...y(n — ny)ax(n — 1)..a(n — ny)e(n — 1)...e(n — n,)|7,
then

is the a posteriori prediction error. Then, a complete algorithm is the follow-
ing

e(n) = y(n)—wT(nl)G(n—l)
O(n) = B(n — 1)+ B (n)pn)e(n)

R(n) = R(n—1)+ - [p(n)e"(n) = Rin - 1)

n
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3.3.3 Modification of off-line methods

For slow time varying linear systems usually a modification of off-line methods
is contemplated by the introduction of a forgetting profile.

e Example 1, Recursive Least Squares: For the FIR case this was
introduced in the previous chapter. With suitable definitions for the
regressor and parameter vector, the criteria to be minimized is

V(®) = 3 BV m)ly(n) — 67 (n)e(n)]’

n=1

then the direct solution is

o) = | Anptnet )] | T nplo

This can be rewritten in a recursive form only if 3(n,k) satisfy some
constraints

B(n,k) = An)B(n—1,k) 1<k<n-1

or

Bin,k) = Lﬁ A

=k+1

where 5(k, k) = a(k). Since in general A(k) < 1, if A(k) = A a constant,
then

Bn.k) = A"Fa(k)
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Defining R(n) = 55_, B(n, k)p(n)” (n), then

6(n) = 6(n—1)+R ' (n)p(n)a(n) [y(n) — ¢"(n)8(n - 1)]
R(n) = \n)R(n—1)+a(n)e(n)e’ (n)

or using the matrix inversion lemma with P(n) = E_l(n),

6(n) = 6(n—1)+L(n) [y(n) — ¢" (n)6(n — 1)

_ P(n—1)e(n) a(n)P(n)o(n

L(n) = %JHPT(?@)P(n—l)cp(n) = almPmetn)
= Ly Pl De(m)e(n)P(n —1)
P = 5oy [P =1+ 2+ () P(n = 1)p(n) ]

Note that assuming a linear regression model y(n) = 6,¢(n)+ v(n), the
Least Squared estimate is

N H X TN el () h 3 N el (08, + ()]

n=1

1

6, + | X TVnple” 0| | S B e}

then for N — oo, 8(N) — 6, only if

— v(n) is not correlated with the regressor.

— v(n) is not correlated with the input.

then in general, LS or RLS, are biased.
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e Example 2, the stochastic approximation: There is necessary a
choice of v(n) in

6(n) = 8(n—1)+(n)R™(n)e(n) [y(n) — @' (n)8(n — 1)
R(n) = R(n—1)+7(n)|e(n)e’ (n) - R(n—1)]

The usual restrictions

—7(n) 2 0.
— X7 7(n) = oc.
— Y2 9%(n) < 0o or y(n) — 7, (small) for n — oo,

That is related with forgetting factor. Considering R(n) = ﬁR(n),

0(n) = 6(n—1)+R ' (n)e(n) [y(n) — " (n)6(n —1)]

R(n) = %(1—v(n))ﬁ(n—1>+so<n>soT<n>

then if A(n) = %(1 — v(n)) and a(n) = 1 the gain of stochastic
approximation and the forgetting factor play the same role. In this case,
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e Example 3, the prediction error method: Consider the following
ARMAX model

yn)+ayn—1) = bu(n—1)4+e(n)+ce(n—1) (17)

then 8 = [a b ¢]7. Then it is necessary to build the predictor 5(n/8) of
y(n) based on y(s),u(s) 0 < s <n—1. Then, rewriting (17), we obtain

y(n/0) = —ayn—1)+bun—-1)+cé(n—1) (18)

where é(n) can be obtained recursively from

e(s) = y(s)+ay(s—1)—bu(s—1)—ce(s—1) s=1,...n—(19)

then

g(n/8)+cjyn—1/0) = (c—a)y(n—1)+bu(n—1) (20)

The function to minimize is

V,(0) = z (y(k) = §(1/))?

(NN

Zn: 62(]{77 6) =
k=1

(NN

a nonlinear function of the parameter vector 8. Then only an approxi-
mated solution can be obtained.
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Using a Taylor expansion on 6(n — 1),

Vo(0) = an(H(n —1)+V(8(n—1))[0 —0(n—1)]
+5001) = 80 = DIV (B(n — 1)[8(n) — 8(n — 1)
+O(]l6(n) - 6(n - 1)|1*

where O(]|z]])/||x||* — 0 for ||x|| — 0, we obtain

6(n) = 6(n—1) = [Vi(6(n—1)]" [Vi(6(n—1))]"
+0([|6(n) — 6(n — 1)|I")

Defining 1/(n, 8) = [—%e(n, 0)], then

Vi)' = - é Uik, 0)e(k, 8) = [V,_1(0)]" — ¢(n,8)e(n.6)
V(8) = ViLi(8) +¢(n,0)¢" (n,0) +¢"(n,8)e(n,6)
Additional assumptions are necessary at this point,

= O(|[6(n) = 6(n = 1)|I*) = 0.

- Vi(0)=V/(6(n-1)).

— 0(n —1) optimum at n — 1, then V,_,(8(n —1)) = 0.
— €'(n,0(n—1))e(n,B(n—1)) = 0.

Thus we can write

in such a way that

O(n) = 8(n—1)+ R '(n)yYp(n.0(n—1))e(n,8(n — 1))
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To conclude, it remains the computation of €(n, 8) and ¥ (n, 8) from the
prediction model (20)

%g(n/e)JrC%?J(n—l/e) = —yn-1)
%g(n/Q)JrC%Q(n— 1/6) = u(n—1)
%g(n/e)w%@(n—l/&) = e(n—1.0)
—y(n—1)
or Y(n,0)+cp(n—1,0)=| u(n—1)
e(n—1,0)

In order to obtain a recursive gradient computation assume that

— €(n,0(n—1)) = e(n). Then e(n) = y(n)—y(n), with y(n) = —é¢y(n—
I+ (@En—-1)—an—=1))yn—1)+bu(n—1).

—y(n —1)
—If p(n) = u((n — i)) , then e(n) = y(n) — ' (n)B(n —1).

— Ifp(n,8(n —1)) Z P(n), then YP(n) = —é¢(n — 1)p(n — 1)+ ¢(n)
Finally

6(n) = B(n—1)+ R (np(n)e(n)
R(n) = R(n—1)+ [(nj(n) ~ R(n —1)
Main characteristics

— Similar to RLS.
— Useful with other models.

— Only local behavior guaranteed.
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3.3.4 A first classification: filtered regressor or filtered error algorithms

The main function Mean square output error (MSOE), using
0 = [fi...fn, b1..by,]", i.c., the output error model and @(n) = [G(n —
1)..y(n —ng)z(n —1)..x(n — n,)]?, with

this leads to

winV(6) = E{Jy(n) = ()|

that results in general in a non linear problem without closed form solution.
Other useful models to solve the MSOE minimization problem are:

o Fquation error model

Gl =38 )= 4~

Alg)

This leads in general to two different philosophy associated to the MSOE
problems solutions

e Filtered regressor - filtered error.
e OE (non linear in the parameters) - EE (linear in the parameters).

e Approximation theory - Stability theory.
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3.4 Causal inverse Wiener IIR filtering

e Inverse causal Wiener filters are obtained by minimizing mean square
error criterion.

e Realizable inverse ITR Wiener filters, based on IIR-models, are concep-

tually easy to derive, but explicit solutions for general criteria have been
difficult to obtain.

e The polynomial approach and the factorization approach are used here.

e The causal operation {},, is indirectly evaluated by means of a Dio-
phantine equation (polynomial algebraic equation).

Consider the problem model as described by

y(n) = Gl(q)x(n)+ H(q)r(n)
x(n) = K(q)u(n)

with G(q) = %, H(q) = % and \, = E{r*(n)} as usually, but now

K(q) = % with A, = E{u*(n)} and p = \, /..

The main objective is to estimate x(n) based on data y(n) by minimization
of a mean square criteria, i.e.

J = E{(x(n) — i(n))’} = E{(x(n)— P(q)y(n))*}

where P(q) is a stable rational linear operator.



K(z) - G(z)

Figure 24: General model for the MSE deconvolution problem
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3.4.1 The MMSE deconvolution problem

e Consider the following polynomial spectral factorization

afpB* = EBD(EBD)" + pCFA(CFA)"
where « is a constant, 3(q) is the stable and monic spectral factor and

(.)* is the conjugate operator.

e This polynomial also appears as the numerator of the prediction error
(innovation) model of y(n), i.e.,

15
arpc

y(n) =

e A stable 3(z) exist if and only if E(2)B(z) and pC(z) have no common
factors with zeros on |z| = 1 (system and noise have no common factors).

e The MSE criterion is minimized by the estimator

where ()1 (2) together with L*(z) is the unique solution to the Diophan-
tine equation given by

DR E* B* DY = Qa8 + zAL*

Remarks

e The Diophantine equation can be transformed into an equation in 2!

by multiplying both sides by z7"¢~1. If A(z) has zeros in |z]| < 1, this
equation will always have a unique solution.

e The optimal filter will have zeros in the pole locations of the measure-
ment noise and of the system, i.e., zeros of F(z) and D(z).
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3.4.2 The inner-outer factorization solution

e A stable rational matrix G”'m(z), with full rank p = min(m,n) for
|z| =1 (no zeros on the unit circle), has an inner-outer factorization

Gn|m — G?|PG§|m

with the outer factor G, having a stable right inverse. It also has a
co-inner-outer factorization

nlm __ nlpgyplm
G — Gco Gci

with the co-outer factor G, having a stable left inverse. If n < m, the
co-outer matrix is square, and its inverse is unique.

Remarks:

e Inner and co-inner matrices are generalizations of scalar all-pass. Mul-
tiplication by a (co)inner matrix does not affect the spectral density or
power of a signal vector (note that G is co-inner (co-outer), if G” is
inner (outer).

e The important property of outer and co-outer matrices is that they are
stably invertible (also, the inverses are causal if G,(0) and G,(0)
have full rank p).
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e Consider now the error e(n) of the figure, that can be written as

e(n) = x(n)—a(n)=(1-P(g)G(q)) K(q)u(n) — P(¢)H(q)r(n)

e This can be interpreted in a two-input one-output system as (using the
Parseval theorem to work in the frequency domain)

Blet)e! () = s-tr [ Bl ()T

_ L /|z|:1 [ (1- PG)K ]T [ (1- PG)K ] dz

27 PH PH

Z

e or in terms of a performance index

J = (1= P()G(2))K(2) P(x)H(2)]];
= [[[K(2) 0] — P(2)[G(2)K (=) H(2)] |3

then, by the factorization of the second term

U = [G(:)K(:) H(=)] = U U (21)

where U ., 1s co-outer of dimension 1 x 1 and U; is co-inner of dimension
1 x 2.

e The scalar co-outer will have a stable inverse if the left hand side of (21)
has full rank 1 V|z| =1 (i.e., BE and C have no common factors with
zeros on |z| =1).

e The inverse Uc_Ol(z) is causal if and only if U,(0) # 0.

e Then, premultiplying by U, (norm is preserved) the solution given by

e The inverse UC_O1 is guaranteed to be stable (that justify the factoriza-
tion).
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4 Some useful tools

Concepts on Approximation and Stability theory

1. Considerations on time variant linear systems.

2. ODE, conditions for the association, Liapunov function. Stationary
points: theorems.

3. Approximation concepts: Orthonormal space decomposition of Ly (in-
terpolation), relationship with Hankel norm.

4. Stability concepts: Stability of a quasi-time-invariant linear system. Sta-
bility of a particular non linear system: passivity and hyperstability.



