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4.1 Considerations on time variant linear systems

4.1.1 Properties of the Difference Polynomial Operator

e Definition 1: The time-shift operator ¢~ maps  into ¢ and is described
by

¢l
e} = a(n—i) (22)

e Property 2: The time-shift operator is a linear operator, then

¢ Hex(n) +dy(n)} = ca(n—i)+dy(n -1 (23)

e Property 3: A more general result for the time-shift operator results
from its own definition and can be written as

¢ {fx(n),y(n)} = fla(n —i),y(n — 1)) (24)

where f(.,.) is any given function defined in the discrete-time domain.

e Property 4: The linear combination of time-shift operators is per-
formed as follows

(g +dg ) e(n)} = ca(n— i)+ da(n - j) (25)

e Property 5: The concatenation of time-shift operators is performed as
follows

Ho e}y = ¢ Hetn =)} =ae(n —i—j) = ¢ " a(n)} (26)

e Property 6: The division of time shift operators follows the rule

(F

) )} = D ) = a(n—i+j)  (@0)
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An important extension, the difference polynomial operator (DPO)

e Definition 7: The extrapolation of equation (25) for several terms results
in

Cle(n)} = (e, + o+ g™+ oo g™ ){a(n)}
= cpa(n)+..+cazx(n+n.—1)+cox(n+n.) (28)

e With adaptive filters, is common the causal form of the DPO

Clg)=q¢™Clg) = co+c1g 4+ ...+ eng™ (29)
e Then the DPO in the frequency domain Z{¢ {x(n)}} = 27 X(2), then

e Property 8: Extending ideas to transfer function

y(n) = H(g{x(n)} < Y(z) = H(z)X(z) (30)

e Property 10: a DPO (one with at least one nonzero coefficient) repre-
sents a bijective operator in the subspace of one-sided sequences x(n),

such that x(n) =0, ¥n < 0.
e Property 11: The inverse DPO exists and it is defined by

1 —1
() et = ety o)
sl way that O g){Cla){a(n)}} = (€ @) et}

e Property 12: The concatenation of direct and inverse DPOs is a com-
mutative operation, i.e.,

(i) {zt) = (5
D

{C 29)} 32)

D@} = DWIC@m)} 63
COY ot - () et
(S} et = (5i5) 1Cttaton

- cof gt} G
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4.1.2 The Time-varying Difference Polynomial Operator

e Definition 13: The TVDPO is defined as

Clg,m){a(n)} = (co(n) +er(n)g™" + oo 4 eo()g ")z (n)}
= co(n)x(n)+ c(n)x(n —1) + ... + ¢, (n)x(n — n(35)

e Property 14: The concatenation of a TVDPO with either a DPO or a
TVDPO is not a commutative operation.

e Example: Consider the two first-order TVDPOs C(¢,n) = 1+c¢1(n)g™}
and D(q,n) =1+ di(n)q~! with C(q,n) # D(q,n). Defining

ei(n) = Clgn){D(g,n){x(n)}} (36)
es(n) = D(g,n){C(g;n){x(n)}} (37)

it is easy to verify that

e1(n) —eg(n) = [c1(n)di(n — 1) — ci(n — 1)dy(n)]z(n — 2) (38)

is generally different from zero, implying that e;(n) and ey(n) are two
distinct sequences.

e Property 15:

(Clg.m){x(n)} = Clg,n){C(g,n){x(n)}}

— CQ(an){x(n)} (39)
C(q,n) S — 1 o
(D(q,n)){ )} (D(q,n)) g (n)}}

7 C(q’n){@{x(n)}} (40)

e The difference between both sides of the inequality approximate zero if
we assume the coefficients of the TVDPO essentially constant, i.e., the
small step approximation.
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4.1.3 Stability of time varying recursive filters

e Consider the state space description of a time-varying recursive filter

~

y(n)

R e e | b

e To study the small step approximation, consider also a time invariant
system with the property that its fixed parameters agree with those of
the previous equation at time n, i.e.,

for all £ < n.

o If the parameters vary slowly, i.e.,

<e€

for all £ < n and with € small. An when ¢ — 0 the two systems must
coincide (in the limit).
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e Consider now being approximating a rational system with instantaneous

error given, with this approximation, by

e(n) = go(hk — hyyu(n — k)
= (ho — d)u(n) + é (hi — cA*b)u(n — )
A(k) b(k) ] = [ 12 Z ] for all £ was used.

h
where [ c(k) d(k)
e Since the approximating system has time varying coefficients

(ho — d(n))u(n) + i (hy — c(n)®(n,n —k+1)b(n — k))u(n — k)

e(n) =
k=1
k=1,

1
An—1)An-1)..,.Aln—k+1) k>1."

where ®(n,n —k+1) = {
e Clearly both errors are similar if the time-varying parameter change is

sufficiently slow.
o If a;(n) =0, an FIR filter approximation, then the error is

oo

e(n) = é(ho — bp(n))u(n — k) + k:%:ﬂ hpu(n — k)

e To quantify the similarity of both systems we verify BIBO stability.

e Two remarks:
— Stability of time-varying IIR filters is a generic necessary condition

for a possible parameter updating algorithm to converge.
— Stability properties of time-varying IIR filters can vary with the

specific realization chosen.



99

e The concept of exponential stability and Liapunov methods are help-
ful to verify BIBO stability.

o If

— The elements of the state space description remain bounded for all
time n;

— x(n+1) = A(n)x(n) (the homogeneous part) remains exponentially
stable.

the time-varying system is BIBO stable.

e By the second condition, for any bounded initial condition ||x(n)|| < oo,
then ||lz(m)|| < Fa™ " ||x(n)||, for all m > n, where 5§ > 0 and 0 < o <
1.

e Then using ®(m,n) we obtain

x(m) = ®(m,n)x(n)+ T:Z::_: S(m — 1, k)b(k)u(k)

for all m > n, from where it is not hard to see that a(m) remains
bounded, and then y(n), which implies BIBO stability.
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e A constructive way to shown exponential stability: Liapunov method,
can lead to BIBO stability without appeal to the small step approxima-
tion or slow parameter variation approximation.

e To quantify the slow parameter approximation we consider

[A(n+1) = A(n) < €

or x(n+ N)=A(n+ N —1)..A(n 4+ 1)A(n)x(n) is approximated by
Z(n+N)=AVE(n).

e But this is stable if A(n) has all its eigenvalues inside the unit circle. In
particular, this is true if exist P > 0 for Py = P — (A")TPA" > 0.

e Then for the fixed case, this leads to

' (n)Px(n) —x (n+ N)PE(n+ N) = & (n)PyZ(n)
l(m)lp = [2(n+ N)p = l2(n)lp, > alle)|p

where ¢|jv|| p < ||'U||P2 < ||| p was used. Then

lZ(n+N)lp < (1-c)lzm)llp

e The small step approximation leads to

[2(n+N) —ax(n+N)|p <8

where 6 1s a constant forced to be small if € is small. This then must
lead to

lz(n+N)l|p <llz(n)p
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e A constructive way to verify the exponential stability of time-varying
systems is using the Liapunov equation.

e Consider {A(.)} related to our time varying system, that satisfy P —
AT(n)PA(n)=C(n)C"(n) > 0.

e Define y(n) = C*(n)x(n).

e Following similar ideas than previously, and considering a time window
of N time instants

le(ml — et + i = luml}
le(n + Dl — 20+ 2 = [lytn+ DI
le(n+ N — Dl — letn+ Ml = Jy(n+ N -1}

Summing

le(mlp — e+ N} = Nzglnyw)n?f
e Note that

y(n) C'(n)
y(n‘—l— 1) _ c’(n —|-'1)A(n) 2(n)
y(n+N—1) CT(n-I—N—l);I)(n-l—N—l,n)

= O(n+ N —1,n)x(n)
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e Also note that

Definition: The pair (A(.), C*(.)) over the time window n,n +
1,...,m is uniformly observable if there exists an integer N
and positive constants ¢; and ¢y such that

0<e I <OT(n+N-1,n)0mn+N-1,n)<cl <

e Then, if this property is verified

lz(m)|p = ll=(n+ N)|p=’ ()0 (n + N = 1.n)O(n + N — Ln)x(n)
i [|z(n)l7 > cicsll=(n)lp

or

lz(n+N)lp > (1-cac)lzm)llp

Note that 0 < (1 — ¢je3) < 1 since ||x(n + N)||2P is positive.

e Increasing n by N steps successively we obtain

lz(n+EN)Ip > (1= ccs)llz(n)lp

but the "worst” case decay is to maintain constant ||cc(n)||2P by N iter-
ations.

e Then, this leads to the following equation

lz(m)lp 2 5*(1 = cres)™ " |l(n)|p

for all m > n, for some constant 3. This is nothing more than the

exponential equation related to stability by recognizing that o = (1 —
1/2N
0103) .
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e To summarize

Theorem: The homogeneous time varying system x(n+1) = A(n)x(n)
is exponentially stable provided there exists a symmetric positive definite
matrix P fulfilling a Liapunov equation

P — AT(n)PA(n) = C(n)CT(n)

such that the resultant sequence {C(.)} gives (A(.),C"(.)} as a uni-
formly observable pair.
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4.2 The Ordinary Difference equation

4.2.1 ODE association to ITR Adaptive Algorithms

The ODE method can be used in adaptive algorithms of the following general
form

O(n+1) = O(n) +aR ™ (n+1)¥(n)e(n)

R(n+1) = R(n)+ a[¥(n)¥7(n) - R(n)] (41)

where O(n) is the parameter vector, ¥(n) is the regressor, and e(n) is the
prediction error.

The average behavior of @(n) and R(n) in the previous algorithm can be
studied by the solution of the following associated ODE

— = @ (HE[¥(n)e(n)]

— -~ = E[¥(n)¥(n)] - o) (42)
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In order to justify this association, there exist two behaviors that define
the convergence analysis of interest:

e constant a (weak convergence or convergence in distribution).

e decrescent a (convergence with probability one).

The conditions for ODE association for both cases are summarized as
follows.

e decrescent a.

—a) a(n) — 0 for n — oo, i.e., the convergence is possible indepen-
dently of the stochastic environment.

—b) X0, a(n) = oo, i.e., the estimate is reached through an arbitrary
number of iterations.

A typical example is a(n) = 1/n. Note that t = }_; a(k).
1. Smoothness
2. Regularity

3. Boundness

4. Liapunov Function.

® (v constant.

In this case t = na, and t = na — oo for a — 0

1. 1 to 3.: Analogous to the previous case.

2. Stationarity.

Some properties of the analysis by the ODE associated
e ¥(t) converge to the stable stationary points of equation (42).

e The ODE trajectories determine an average asymptotic path for the
estimate 8(n + 1).

e A drawback of the analysis by the ODE method is that the information
related to convergence speed is lost.
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4.2.2 Heuristics to ODE approximation

Defining V(n) as the regressor vector and p(n) as the parameter vector, the
stochastic gradient version of the updating equation for can be written as
follows

p(n+1) = p(n) + pe(n,{p(n);)V(n,{p(n)})

For N successive time instants (N sufficiently large)

Pn+1)-p(n) = pe(n{PmHV (n{p(n)})
Pt2)-P(ntl) = pe(n+1{Pn+)})V (nt1,{P(n+1)})

Pn+N)-P(n+N-1) = ue(n—l—N—1,{p(n—|—N—1)})V(n—|—N—1,{p(n—|—N—1)})

or
n+N—1
p(n+N)—pn+N—-1)=upu kE e(k Ap(k) )V (k {p(k)})
If u is sufficiently small (i.e., the small step approximation) such that
p(n)=Zpn+1).Zpn+N-1)
then

@
TN
—
=
TN
T
N
—
N
112

e(k/p(n))
V(k/p(n))

<
“P?‘
—
=3
annN
o
S
——
S
1%

for k > n, i.e., each output of these filters is considered an stationary process.

Indeed, if the reference and the input signals are stationary then e(.) and
V(.) are stationary if p(.) is in a well defined domain.
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Also, a natural approximation (ergodic assumption)

n+N-—-1

>, e(k/p(n))V(k/p(n)) = NEle(n/p(n))V(n/p(n))]

k=n
or

p(n+N) - p(n)
N

Introducing now a change of variables, specifically: a continuous time ¢, such
that t = n and At = u/N, we obtain

p(t+ Aﬁti =P & Blo(n/p(n)V (n/p(n))] £ F(p)

And finally, for p << 1 or At — 0,

a%?=f(p)

= Ele(n/p(n))V(n/p(n))]
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4.2.3 Stability analysis

Let p, a convergence point of the ODE, then

=0, or

e p, is an stationary point, if f(p,) = 0 such that —agft)

{p.} ={p : f(p) =0}
e p, is an stable stationary point (attractor), when
Vp(0), such that|p, — p(0)| < e, then p(t) = p,

e if p, not satisfies the previous condition is is an unstable sta-
tionary point.

Liapunov direct method

e Exist L(p) > 0 a scalar function, with local minimum in p,, i.e,

L(p(t)) > L(p,) 2 0

Vp(t) # p, such that |p(t) — p,| < e.

e L(p(t)) decrescent in all trajectories of p(t), i.e.

OL(p(t)) _ OL(p(1)'Ip(t) _ OL(p(1))’
ot op(t) Ot op(t)

f(p(t)) <0

Vp(t) # p, such that |p(t) — p,| < e.

then p, is a local stationary point of the ODE.
Liapunov indirect method
Linearization around a stationary point, i.e.

of(p
f(p.+Ap) = f(p.) + [ a( )] Ap+ O(Ap)Ap
P _
p_p*
then p, is a local stationary point if 61;;” = [ag%})]p—p has all their

eigenvalues with negative real part.
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4.3 Some linear systems concepts

e Consider the state variable equation

o Il b | )

then H(z) = d—l-C(ZI—A)_lb =, izkz_k with izk _ { d, k=0;

cA"'b, k=12 "

e The controllability and observability grammians fulfill

K = AKAT +bb"
W = AWAT +cle

where K (respectively W) is definite positive if and only if (A, b) (resp.
(A, c)) is completely controllable (resp. completely observable), or H(z)
is minimal.

This result is closely related to the "infinite horizon” controllability
(resp. observability) matrix

C = [bAb--- ANy .. AN+kb...]
O = [ccA --- cAVL L. cANTR ...]T

since K = CCT (resp. W =0T0).
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Also, driving with a unit-variance white noise sequence the state variable
filter, it is possible to obtain

E{z(n)z’(n)} = AE{x(n)z"(n)}A” + bb”

in such a way that K represent the state covariance matrix.

e Consider the following double infinite Hankel form matrix

[ hy hy hy o]
B ho hs hy ---
Lo = iy hs o
c
cA 5 . o
then I'yy = | 42 [b Ab A°b - -] = OC has rank N if the realization
is minimal.

Note also that, their eigenvalues (or singular values) verify

or(Ty) = JM(TETg)
=/ (CTOTOC)
= A\ (0TOCCT)
= \(KW)

Theorem: The Hankel form I'y is of finite rank N if and only
if H(z) is an N-th order rational function. Then, for o(I'y) >
oo(Ty) > o3(T'y) > -+, rank (I'y) = N if and only if oy > 0
and oy = 0.

then if K = W = diag(oy,...,0y) the realization is internally balan-
ced.
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o Let z(n) = ﬁu(n) an N-order autoregressive process (i.e., with u(n)
white noise), then

1 0 0 0 0 8 ’ ’

S I A
Blama’ () = || ¢ a ot fue| Boaw ey

- ool a; a9 any 0

e Orthonormal realizations:

Theorem: Let V(z) be an stable all-pass transfer function of
McMillan degree N, and let (A,b,g,vy) be a balanced real-
ization of V(z). Denote Fj(z) = z(zI — A)~'bV¥(2). Then
{el F.(2)}iz1.. N k=0, constitutes an orthonormal basis of the
space Hy (stable and causal functions).

Corollary: for every proper stable transfer function H (z) € Hy
exist unique d and v = {v }r=91,. € Iy such that ﬁ(z) = vy +
271y vk Fi(2). Then vy, vy are the orthogonal expansion
coefficients of H(z).

Particular cases

— Obviously, if V(2) = 27!, it corresponds to v, = cA*b.

- IfV(z) = 1;%;, with some real-valued a, |a| < 1 with o = 1—a?, then

Fi(z) = ozz((zl__;l)ifl, that corresponds to discrete-time Laguerre
functions.

— An orthonormal extension with real-valued poles

R = %kﬁl (1 — aiz) (43)

2T Q41 =1 \ & — @

where ay, is the k-th pole and aj = 1—a% 1s a normalization constant.
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— If Fj(z) are the Szego polynomials Dy(z), that related to the direct

for realization, H(z) = 58 = Siso Vi g’i(é)), then the normalized

lattice realization can be obtained.

— By the state space description

[ w(?ﬁ(jz_)l) ] =@ [ u(n) ] g(n) = [vo nuy ... vy] [ w(g(:)l) ]

where @ = Q,Q)>...Q)  is orthogonal and

I,
0 —sinf, cosb,
ko cosf, sindb,
Iy
u(n), . .
th 0
w(n) z3(n+1
D3(2) Dy(2)
Ds(z) Ds(z)
O
V3 )
)
N
cos @
7 — > "
6 = sinf —sin @
— — -l B
cos @

Figure 25: Third order recursive lattice filter.
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4.4 Rational approximation theory

4.4.1 Some definitions

We denote f(z) € Ly to mean

o o /T |f(e/)]*dw < oo, that admits a Fourier series f(e/") = 532 fredt®
such that X722 |fi]* < oc.

o Also, if F(2) =2 fiz ¥ and G(2) = =2 gp2 7 for |z] = 1, then

the inner product becomes

1

—'/|z|:1F(Z_1)G(Z)d—Z= X fin

< F(2),G(z) > = o]

We denote f(z) € H, if

o For 1< p < oo, |[f(e™)] = (& /7, | () Pdw)"” < .
For p — oo, [ f(e) e = |f(e7)] < .

e The Fourier series expansion is one-sided: f(e/*) = ¥2°, fre/*“. This
implies that f(e/*) can be analytically continued to all points outside
the unit circle by f(z) = 25, frz %, |2] > 1.

In particular, 7 f(z) stable and causal” and " f(z) € Hy” may be used
interchangeably.

Note: If f(z) € Ly but not fully in Hy we can write f(2) = [f(2)]- +[f(2)]+,
the sum of the anti-causal and strict causal part. Also, for f(z),g(z) € Lo,

<[] ()]s >=0.
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4.4.2 Decomposition of H,

The doubly infinite Hankel form I'y, the matrix representation of a rational
system, defines two important Hs subspaces, called shift-invariant sub-
spaces, left shift-invariant subspace (lsis) and right shift-invariant subspace
(rsis), i.e., given

hy hy hg
l91 9295 -] = [fo f1f2] Zz Zi Z;
a right shift to f(z) gives
hy hy hg
92 93 94 -] = [0 fo f1..] Zz Zi Z;

that results in a left shift to g(z).

e Since I'y is not necessarily square it can have a range space and a non
empty null space. Since I'y is symmetric its range and null space are
orthogonal.

o If g(2) is in the range space of I'yy so is its left shifted version. Also if
f(2) is in the null space of I'yy so must its right shifted version.
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Revisiting orthogonal realizations based on shift invariant subspaces

Theorem:

e To every rsis is associated a unique all-pass function, V(z),
which causally divides every element of the rsis. Thus each
rsis may be written as V(z)Hsy to denote the set of functions

V(2)f(z) as f(z) varies over Ho;

e Since every lIsis is the orthogonal complement of a rsis, each
Isis may be written Hy © V(2)Hs, to denote the orthogonal
complement to V(z)Hy;

e The dimension of the subspace Hy © V(z)Hy is the McMillan
degree of V(z).

o If degree V(z) = N, then a set of linearly independent basis
functions for the subspace Hy © V(2)Hs may be taken as the
N functions of the transfer vector C(z) = 2(zI — A)~'b, where
the N x N matrix A and the N x 1 vector b are such the
pair (A, b) is completely controllable and the eigenvalues of A
coincide with the zeros of V().

In particular, suppose (A, b, g,1q) is an orthogonal realization, then

Lemma: Let C(z) the controllability transfer vector, and let V(z) =

det(I—zA)
det(zI—A) ’ then

o < MV(2), 27V (2) >= b,
o <C(z),2"V(z) >=0for all k > 0.

e f(z) € Hy satisfies < C(2), f(z) >= 0 if and only if f(z) is
causally divisible by V (z), i.e.,

f(z) = V(z)g(z) for some g(z) € Hy
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4.4.3 Relation with Hankel form

Problem: Given hy, find the parameters of a rational description (with finite
unknown degree).

In terms of the usual transfer function operator, the matrix Hankel form

91 hy hy hg -+ || fo
92 | hy hg hg --- fi

gs | | hs ha hs oo || fo
ie, g=Ty§f, with g(z) strictly casual and f(z) casual, can be rewritten as

g(z) = [H(=)f (=74

where [.]; is the strictly causal projection operator.

Let T'y of finite rank N, then

Theorem: Let N(Ty) = {f : Ty f = 0} denote the set of vectors
f =1[fo, f1, f2,...]% lying in the null space of T'y7, or equivalently

N(Ty)={f(): [H(=)f(z")]y =0}
Then

e exist a causal all-pass V(z), determined by H(z), such that
f(2) =35, frz"® = V(2)R(z) for some R(z) € Ho.

e Since H(z) = igi; then V(z) = %.
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Particular interesting cases can be obtained by chosen R(z) as follows

1. R(z) = A(2), then f(2) = :7V A(z7!) a finite length sequence (equation
error methods).
e Pade approximant: I'y f = Oj :

e Equation error: I'y f = [ gN ]
N

2. R(z) =1, then f(z) = V(z) a unit norm function (output error meth-
ods).

e Output error: Consider the minimization of ||H(z) — ﬁ(z)HQ

ing orthogonal representation for H(z) = 32, hiFi(z) (hy =<
H(2),Fi(z) >) and H(2) = S vp Fr(2), then the optimal choice

of v = hy =< H(z), Fi(z) > leads to the remaining error

us-

H(z)— H(z) = hxpFyp(z) +hvgoFu(z) + hyvesFygs(z) + .
= V(z) > izN+kz_k
k=1
where Fy i(2) = 27%V(2) was used.

Using the expansions H(z) = Y32, hpz % and V(z) = 23, vz 7F,
we can express

]NZN_HC =< H(Z), Z_kV(Z) >= h,vy + hk—l—lvl + hk+2v2 + ...

hivi Vo
[N T U1
" =T,

B3 b2

or Y2 hyapz ™" = [H(2)V (2 H]4. Then the output error is

1H(2) = H(2)I* = |H)V (P

In the general case deg H(z) < N the best we can do is to force
V(2) to lie in an approximate null space of I'y in the sense that
|T yv|| is minimized.
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4.4.4 Hankel norm rational approximation

Let I'y be approximated by I' ;, then the approximation problem has a closed
form solution with

min

rank FH <N ||PH - PH” = 0N+1(PH)

A physical interpretation of ||I'y || = oy with rank equal IV, for a balanced
realization.

e Considering ||T' ;|| = maxqy1 [T, v = [u(0)u(=1)u(=2) - --]" then
y =1 y2)yG) ' =Tru= OCu.

e It is not hard to see that Cu = (1), where (1) is the state vector
subject to an initial condition having been produced by a unit norm
vector,

e Using the singular value decomposition of 'y

o1 r

Ly = [mmn - nvl 7 2T

on || &&
] O%/Q : (1)
then y = [y 792 -+ 1x] 0%/2 xQ_(l)
o2 | Lew1)

= lecvzl nkaéﬁxk(l) or, since {1 } are orthonormal ||y||2 = lecvzl ak[xk(l)]Q

Another important property

1H(2) = H(2)||* < 01(Ty = T ) < supppz |H(2) — H(=)|

an upper bound for the approximation in Ho.
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Indeed, if we consider the Frobenius norm, i.e, that is defined for a matrix

P11 P12 P13 "
J2 P21 P22 P23 "¢
N P31 P32 P33 -
1/2
as | Pllr = (Seapd)

Lemma: Let D = diag|dy, dy,ds, ...], where dj, = dj_4 2]“7, dy = 1.
Then for any Hankel form I'y,

- 1/2
|DTyD|l = (z hz) — HEL

That leads to a priori lower bound

min H(z)— H)|? = min ||D(Ty —T.:)D
degH(z):N” (=) @ rankFH:N” (T H) Iz

> Y oi(DT'yD)
k=N-4+1
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4.5 Stability theory concepts
4.5.1 Stability of quasi-invariant systems
Convergence in the mean of an IIR adaptive algorithm can be studied by a

related difference equation.
If the average behavior of the algorithm can be written as

E{é(n +1)} =R+ Rg(n)]E{é(n)} + R3(n) (44)

where E{0(n) — 6,} = E{0(n)} with 0, defining the ideal parameters, and
R, is positive definite and Ry(n) has norm sufficiently small, then this system
is called quasi-invariant.

Theorem: Let the quasi-invariant system defined by equation (44),
l.e.,
e R, satisfy |R}|| < ¢8" with ¢ and [ are constants such that
c>0and 0 < (<1,

e Ry(n) has a norm sufficiently low, i.e., ||Ra(n)|| < kg, for xy a
positive constant.

e R3(n) has bounded norm, i.e., ||R3(n)|| < k3, for k3 a positive
constant.

Then if 0 < (f 4 ¢ ky) < 1 the system of equation (44) is
asymptotically stable.

Corollary: Note that if | R3(n)|| tends to zero for n — oo, then the
system of equation (44) converge asymptotically to the origin, i.e.,

E{8(n+1)} — 6, (45)

for n — oc.
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4.5.2 Stability of a non linear feedback system

F(2)

Nonlinear

Time—varying

Figure 26: Nonlinear feedback system

Consider F (z) a rational transfer function and the feedback law related to
the figure of the form (Popov inequality)

N

Y s(n)e(n) < 57

n=0
Theorem: The closed-loop system of the figure is asymptotically
stable (i.e., s(n) and €(n) remain bounded and tend to zero) for
all feedback laws as the specified, and for all initial conditions, if
and only if F(z) is strictly positive real, i.e., a stable and causal
function such that: ReF(e/*) > ¢ > 0 for all w.

Properties of positive real functions

o If ReF(e/) > ¢ > 0 for all w, then ReF(2) > ¢ > 0 for all |z| > 1.

o If F(2) is strictly positive real (SPR), then it can have no zeros in |z| > 1,
i.e., if SPR then minimum phase (the converse is not true).

o If F(z) is SPR, so is its inverse 1/F(z).

e Suppose F(z) SPR, and let €(n) = F(z)s(n). Then for all non zero
square summable {s(n)}: 32 s(k)e(k) > 0.
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Proof of the Hyperstability theorem
Consider u(n) and y(n) such that

U

Yy

n) = s(n)+en

n) = s(n)—e(n

(
(

that form y(n) = J;Ei;iu(n) = G(z)u(n), also a rational function with realiza-

tion (A, b, ¢, d). If the bounded sequences u(n) and y(n) tend asymptotically
to zero the same apply to s(n) and €(n).

From the properties of SPR functions, if F(z) is SPR, then |G(z)| < ¢ < 1
for all |z| > 1. Based on an bounded initial condition of the state vector of
the system realizing G(z), (0), that can be written as

x(0) = [bAb A% ...]

and that for N time instant we can write

y(0) c’ - d 0 -+ 0] u(0)

1 TA T R 1
y(: ) = c: x(0) + C.b d . () U(; )
y(N) c’AY TANy - cTb d | | u()

Then is not hard to shown that (extending the use of Parseval theorem to
a bounded initial condition)

N N

Y yi(n) < X u(n) + fla(0) (46)

where f[x(0)] is a bounded function of the initial condition of the state vector
of the system realizing G(z).
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On the other hand, sustituting s(n) and €(n) in the Popov inequality we
obtain

> ui(n) <X yin) + 497 (47)

N N
> 3 o) + 465+ Fla(0)]

£ o ¢ IO

g
Ql\D
3
IA

this implies that y*(n) — 0 for n — oo and by (47) the same can be inferred
for u?(n).
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Passive Impedance functions

Using p = % and F(p) (a continuous time transfer function) an impedance.
If S(p) is the Laplace transform of a casual s(t) electrical current, then e(t)

is the resulting voltage.

If 7(p) is SPR,

|7 sedt = [~ FGQSGQ)S (jQ)d0
= [ FGQISGQ)PAQ > 0

then the impedance is said to be passive.

Spectral factorization

Since for an stationary stochastic process with correlation {ry}, with r, =
r_p, S(z) = 231z~ ¥ is nonnegative along |z| = 1, then by chosen F(z) =
ro/2 + 1127+ rgz7? + L, s easy to see that F(:71) + F(2) = 8(z). Or,
F(z) is SPR if and only if it is the (unilateral) z-transform of a correlation
sequence {1 }.

Also, if §(z) has positive geometric mean, i.e.,

exp (% /_p; log[S(ejw)]) > 0

then it admits a spectral factorization: S(z) = F(z)F(:7!), for some
stable and causal F'(z). The stochastic process which furnishes the correlation
ri could be modelled as the output of F(z) driven by unit-variance white
noise.

Positive real lemma: A rational function F(z) = d+c(2I—A)"'bis
positive real if and only if there exists a symmetric, positive definite
P for which the symmetric matrix

P-A"PA c—ATPb] B [ L'

c' —b"PA 24— cPc NT ] [L N

is positive definite.

Then

F(z)=N+L(:I - A)"'b
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5 MSOE minimization

MSOE minimization and related algorithms

e Stationary points (existence of local minima),
e ODE ( convergence to local minima and instability).

e Direct-form realization of an adaptive IIR filter: implementation of the

derivatives, simplifications.
e Lattice realization: simplifications.

e Other realizations



