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5.1 Adaptive IIR Filter Realization

W
=
_|_
.
~
S
~—

y

=
‘3
N
T
RS
1=

Figure 27: System identification configuration

The plant output is given by

B(q)
Alg)

where I/(n) 1s a zero mean measurement noise with bounded variance and

d(n) =

x(n) +v(n)

uncorrelated with z(n).

The IIR adaptive filter is

y(n) = Bn(q)x n
where
Bula) = Sl Al =1+ X g

where is assumed, without loss of generality that M = N.
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The output error e,(n), defined by e,(n) = d(n)—g(n), is minimized based
in the following function

. 2
B B,
cor = 1/2teon) = £ (512 3490} ] |+ 1t
An approach to solve this minimization problem is
8(n+1) = 6(n) + 1V (Eop)(n)ea(n) (43)
where
O(n) = [a1(n), ., @, bg(12), covey by (0)]”
and
0 0 0 0
V(€or)n) = [5G0 S0t oLyt
a€OE agﬂ

where - and are suitable recursive estimates.

b,
To achieve faster convergence at the cost of additional complexity, a Gauss-
Newton version algorithm can be contemplated

6(n +1) = 8(n) + uP(n + 1)V (Eor)(n)eo(n)

(N (e POV (€)Y (Eor) (1) P(n)
P+ 1) = )(P() 1—f+vT<gOE><n>P<n>vT<£OE><n>)



To obtain a recursive realization
N
y(n) = — kE ar(n)y(n — k) + 3. bp(n)x(n — k)
=1
In algorithm (48) the coefficients 8(n) can be adapted as follows

(1/2)V9E{eg(n) R~ eo(n)Vgeo(n) = —e,(n)Vgy(n)

where
. _ [99(n) dy(n)  9y(n) dy(n) 1T
Vgi(n) = dar(n)? " Dan(n)’ Gbo(n)’ """ azSN(n)]

Then
B = k)= 3 a2
oin) _ & din—m)
T DR R o

Using the slow convergence factor approximation

O(n)=6O(n—1)~..~60(n—N)

Then
dy(n) oy Nd n@gj(n—m)
dar(n) y(1 K) = 2 amln) g )
= —— y(n —k
n(q)y( )
dy(n) ol — 3 N 5 (n dy(n —m)
obi(n) (=)= 2 o )aéj(n—m)
= — ! x(n —j)
An(q)

@f(n_l) = ~ (n)

x(n) =

128

(49)
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Figure 28: IIR adaptive filter realization wit hte Recursive Gradient algorithm

it is possible to find that

With (n) = [gr(n — 1), ... §y(n — N +1),24(n),....,xp(n — N +1)]7, the
final form of the gradient version of the algorithm is

O(n+1) = 68(n) + pah(n)eo(n) (50)
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5.2 Stationary points

e Objective: use of the Hy decomposition theorem to characterize proper-
ties of the algorithm.

e Witn x(n) white noise and N = M, the stationary points related to the
b; coefficients

—Lu(n)
A(q)
—=e(n=1) | (B(g) Blq)
(9) _ 2(n)l =
B W (S - ) e = ¢
ﬁx(n—]\f)

Co(z) = | MO | = 2(2Dy4 — A) 7'y

where
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—a) —ay —ay 0
1 o --- 0 0
A, = 0 1 : :
.0 0
i 0 0 1 0
[ 1
0
ba - .
0

e The associated all-pass function is

det(I — zA,)
V., —
(2) det(zI — A,)
_ Z_laN + aN_lz_l + ...+ alz_N_l + 2N _ 2_1V(z)
l4+azt+ . +Fayv_2¥ " t4+ayz=V

e By using the decomposition theorem, the equation of the stationary
points with respect to the b; coefficients is satisfied if and only if

where ¢(z) is strictly causal.

e To optimize the MSOE as a function of a; consider

A (q)
g‘z(qq)x(n—?) B(qg) Blg) _
SR (e~ ) oop =0
| =M

that in terms of the Hs-inner product notation can be rewritten as
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note that this is a necessary but not sufficient condition for the MSOE
to be minimized with respect to the a; coefficients.

IS

|

~—

e Since that the optimization with respect to b; requires that H(z) —
H(z)=V(z)g(z), then

VG ()

— {C(). V) EGEg()
e Some remarks:

— Noting that ﬁ(z) = d+ ¢C(z), then by the decomposition theorem,
the inner product

~

<V(EYHYH(2).27" > = <H(2),2"V(2) >
= d<1,7"V(2) > +e < C(2), 7"V (2) >=0

then V(z‘l)ﬁ(z) is anticausal. Then V(z)ﬁ(z‘l) is a causal func-
tion given by

o 2 NAEY BT VBT
VERHED) = 0 Ae T A
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— Since g(z) is strictly causal, the function zg(z) is causal.

— Then the product [V (z)H (2 )][zg(z)] appears as a causal function
and by the decomposition theorem, it must be causally divisible by
Vi(z).

— If ﬁ(z) has degree N, this implies that [zg(2)] is causally divisible
by V(z) (i.e., the zeros of both functions coincide).

— Then [2g(2)] = V(2)q(2) or [29(2)] = V(2)271¢(z), with ¢(2) € Ha

Theorem (Walsh): If degree of H(z) is N, then H(z) is a sta-
tionary point of ||H(z) — H(z)||? if and only if

H(z) = H(z) = 7' [V(=)]Pq(2)

for some ¢(z) € Hy, where V(z) is the all-pass function whose
poles coincide with those of H(z).

e The main interpretation of this result is as an interpolation condition,
i.e., for example, if z1, .., 2y are the poles of H(z) then

H(Zk_l) - H(zk_l) k:17 7N7
O0H(z) B 8ﬁ(z)
9 = 9 - kE=1,...,N,
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Properties

e Using the identifiability of the proposed model, defining n* = min(N —
na, M — ny), then

— if n* > 0 the problem is of sufficient order,

— else if n* < 0 the system identification problem is of insufficient

order.

All results obtained by the decomposition theorem can be used in the
insufficient order case, mainly the interpolation results.

Is useful to consider the MSOE as
¢ = E{e2(n)} = Fy — 2Fy(a)" b+ b' Fy(a)b

where Fy = E{y*(n)}, Fi(a) = B{[58e(m)][2=1]} for 0 < i < ny,
Fy(a) = B{[{ 5=} for 0 < i <ny, 1< < nge

where it is possible to verify the quadratic relation with the numerator

coefficients. By minimizing with respect to b, the reduced MSOE is
given by

& = E{e;(n)} = Fy — Fi(a)' Fy(a)Fi(a)
An approach to the analysis of the stationary points introduce the con-

cept of degenerate points, i.e., such stationary points where Bn(q) = 0.

It can be shown that for many cases of insufficient order, i.e., n* > 0,
the existence of degenerate points implies the existence of saddle points
and, as a consequence, determines the multimodality of the MSOE.
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Also, in general (for sufficient and insufficient order cases)

e A stationary point that introduce a pole-zero cancellation is in fact a
saddle point (not a minimum of the MSOE).

e Normality condition of the MSOE: Let s, = mindeg H(z)<k ||H(Z)—H(Z)||2
corresponding to the global minimum. Then s, < s (note that this
is not a general property of every minimization method).

e Suppose the cost function admits k stationary points (including pole-
zero cancellations), i.e., ﬁl(z), ,ﬁk(z) Let ¢;, ¢ = 1,..., k, the number
of the negative eigenvalues of the Hessian matrix at the -th stationary
point. The index of stationary points is defined as % (—1)% where the
sum is over all the stationary points. In particular, a local minimum will
contribute a term +1 (¢; = 0) to the above sum.

Theorem: The index always equals one: ¥;(—=1)% =1
Remarks:

— If two or more stationary points exist, they can not all be minima.

— If al candidate stationary points are expected to be minimum points,
the cost function must have a sole stationary point, yielding a global
minimum.

— If two or more distinct minimum points occur, then saddle points
must also be present.
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5.2.2 ODE associated

The ODE associated to the gradient version algorithm (50), can be written

09 (1)

o = E{y(n)e,(n)}

and for the Gauss-Newton version

— = e ()G (8, —9(t))
—— = Gy—o()
where
Gi = E{y(n)¢' (n)}
with @(n) = [ii(n — 1), §i(n — N), 2(n)..., 2(n — M)]", and
Gy = E{4(n)y'(n)}

In particular, to verify the (local) convergence of the ODE associated, a
suitable Liapunov function can be easily found (by definition)

V() = S E{ )
such that
@yt = — By 2
= —[E{gp(n)e,(n)}]" [E{p(n)e,(n)}]

<0

Because of the existence of local minima, only local convergence of the
previous algorithm can be guaranteed.
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5.3 Alternative realizations

The particular choice of a realization of the IIR adaptive filter has influence
in, between other issues:

e computational complexity (for stability check).
e convergence speed (exponential stability must be guaranteed).

e MSOE surface shape (mapping between direct-form parameter space
and other form of adaptive filter parameters).

For the MSOE problem, however, the local minima problem can not be
avoided.
Other possible realizations are

e Cascade: manifolds, high complexity of the gradient computation, low
convergence speed, not guaranteed exponential stability.

e Parallel: manifolds, the lower complexity of the gradient, low conver-
gence speed, not guaranteed exponential stability.

e Frequency domain: manifolds, high complexity, suitable convergence
speed, not guaranteed exponential stability.

e Orthonormal: modeling different poles, low complexity, suitable conver-
gence speed, not guaranteed exponential stability.

e Lattice: no manifolds, higher complexity than orthonormal, suitable
convergence speed, guaranteed exponential stability.

In this characterization is not included aspects related to convergence analysis

of the MSOE.
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5.3.1 Parallel and cascade realizations

Is obtained from the partial fraction expansion of the transfer function of the
adaptive filter at iteration n fixed, resulting in a sum of N/2 sections, as

_ Bf(q) _ bow(n) + bix(n)q ™!
Ak(q) 1 —=aw(n)gt — ag(n)g2

H;(q)

where k= 0,...,N/2 — 1.
e Stability check: |ag(n)| < 1 and |ajx(n)| < 1—ag, for k =0, ..., (%_1)_

e MSOE surface with multiple global minima (!V), divided by manifolds
when a1 = ay; and agp = agj for k,j =1,..., N/2. This leads in general
to slow convergence speed.

e 11l conditioned in a Gauss-Newton algorithm (because the Hessian ma-
trix will be close to singular over the manifold regions).

e Computational complexity comparable to (slightly lower than) the direct-
form realization.

The cascade realization

e Analogous to the parallel realization, as a product of N/2 second-order
sections.

e Low convergence speed by similar considerations on manifolds.

e High complexity in the gradient computation.



139

B (2)
AQ(2)

(n)

e

x(n i) 4&{)

N
JBL (hH
N _
)
Z—l
Aﬂil , __Oy(n=1)
An2 (2) aal %_1(77'_1)
Z—l
9y(n—2)
6&2 %_1(71—2)
L — 1 - ) 9y(n)
Ar?_l(Z) 81)0 %—1(71)
-1

du(n—1)
oby y _,(n=1)

Figure 29: Parallel realization of the adaptive IIR filter with a detail of the last section
coefficients.
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5.3.2 Frequency Domain Parallel realization

e Include a Discrete Fourier Transform to uncorrelate the inputs to the
complex first-order sections.

e A variant is a Frequency domain parallel realization using second order
sections and the Discrete Cosine Transform or any other real transform.

e Reduce ill conditioning in Gauss-Newton algorithms, the manifold prob-
lem remain.

e Introduce additional complexity with the transform.

e Some simplifications can be considered, but lead in general to suboptimal
MSOE performance.

4

x(n) | | BY(»)
g A ()

(n)

e

5 > n(2) \
AL (2)
T 4\()

N
iz
Z—l
AML R A@g}(n—l)
An2 (2) aal %_1(77'_1)
Z—l
05(n—2)
da, %_1(71—2)
L . ) 9y(n)
Ar?_l(Z) i 81)0 %—1(71)
-1
z
25(n—1)

ai)l %_1(71_1)

Figure 30: Frequency domain adaptive IIR filter with a detail of the last section coefficients.
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5.3.3 Lattice realization
e Onto mapping with the direct form realization.

e High complexity for gradient computation (a new lattice for each gradi-
ent component), but O(N) lattice realizations exists.

e The stability check for the one multiplier form (see the next figure) is
|kr(n)| < 1.

e For the normalized form lattice realization, the following generic block

1 Ky (1)

uy(n) = {j:;:é:z% 1fk<”>]uk1(n)
1—kz(n) 1—kz(n)

need to be replaced by

cosr(n) —sinfp(n)

up(n) = [ ]’uk—l(n)

sinfr(n) cosfp(n)

where u;_1(n) and u;_1(n) are the output and input to section k, re-
spectively.

e The normalized form lattice realization (described in the previous chap-
ter) guarantee exponential stability if §;(n) < 7/2.
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dvn(n)

'

dy(n)

Ikn(n)

Figure 31: Lattice realization (with multiplier form) with the detail of gradient computation
of kn(n) and vy(n).
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5.3.4 Orthogonal realization

Consider the orthonormal realization

y(n) =[S v Ff + v F(2)} u(n) + w(n)u(n) (51)

where

ay, = —5v/e(Va+Vb)  of =ay,
A2, = %\/E (\/_ - \/E) O/Qk = aq,

with: a =1 -5, + P2, 0 =1+ 31, + 32, and ¢ =1 — (5. Note that the
definitions of ay,, ay,, o, and a3 are required in order to maintain the basis
functions F(z) orthonormal, i.e.,

[Fe() =1 (Fi(2), Fi(2)) = Ok,

Then e(n) that can be expressed as

e(n) = d(n) —y(n) =d(n) — H(z)u(n)
= d(n) — (Zi2 wi(n) +w(n)u(n))
where d(n) is the reference signal and wi(n) = vor_1y3(n) + veyr(n) =
vor—1 Fl(2)u(n) + vor Fi(2)u(n).
Using an stochastic gradient algorithm

d(n+1)="60(n)— puVin) (52)

where

O(n) = [vy(n)vi(n)..vn_1(n)ry(n)

611 (n) 621 (n)"'ﬁlN/Z (n) ﬁQN/Z (n)]T



and V(n)
oy(n Oy(n) Oy(n
V(n) = —2e(n)[ ... g i)
dy(n) dy(n)  dy(n) Iy(n) 1T
Ofry  OPay OBy, OBay,
Then
du(n) _ Fi(n)u(n) fork even
v Fl(n)u(n) forkodd
) = i (v 1 2 4y )
b i (e B+ i)
k=0,1..N (Fy(z)=1),j=1,..,N/2 where
0 if g >k
O (n)_ Fe(2) = o) g | un)  if j=
Pl = Fe) s | u(n) if G <k
0 if g >k
opi_t [Fl(=) = Fu(=) g uln)  if j =k
i) 5k — F(2) s | uln) if G <k
and
a ONg(z Di_1(z
Fi(z) = évﬁfj) (Hf:l DDZ.(,E)))
ONg(z i—1(z
Fl(z) = ]@Vﬁz(j) (Hf:l DDZ.(Z()))
Fl(z) = Ni(z) (Hf:u;ﬁj Dﬁ(lz()z))
with 6%’“1(;) = g;;k + gzi’“ 2~1and mavﬁkz(;) = gz;’“ + g;;’“ 21 Also
6a1k _ 1oy 6a2k 1 (ai _ ozlk)
B, T 2+/ab 081, — 2\ ¢ Vab
6a1k S 6a2k 1 (azk azk)
352]» T 2ab 351]» T2\ ¢ Vab
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(53)

(54)
(55)

(56)
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Similar equations can be obtained for 65/%5?)7 65/%( n) F{'(z2), F]fl(z), 6%1(;)7

ON;(2)
95,
After some reordering, equations (55) and (56) can be rewritten as

that corresponds to the odd numbered vy coefficients.

%?=@wwa (1) + vy F(2)u(n)) = £50(n)

+5.5 [Ek/l ki WE(N )] (57)
B = (v FY (Juln) + gy FY(2u(n) ) = 5 50(n)

5 | Shl i we(n)] (58)

e Although these equations are not suitable for direct implementation,
they are useful for the analysis of possible simplifications in the updating
algorithm.

e The third term of the right hand side of both equation (57) and equation
(58) represents the main factor of increase in computational complexity,
if the exact gradient so obtained is implemented.

e Assuming that u(n) is white noise, the stationary points for MSOE min-
imization using this algorithm can be written as

(Fi(=). (H(z) = H(2)))=0 (59)
(Fl(e).(H(:) = HED)=0 (60)

(v F' (2)u(n) + v Ff(2)u(n)) — 55 H(=)

+ 55 St wr(n)|  (H(z) = H(2)))= 0 (61)

(o i) (2Juln) + vai Ff () ) = 55H )

57 [Eili g we(n)| (H(2) = H(2)))=0 (62)

fori,j=1,...,N/2.

e The mapping between the coefficients of the direct form realization and
the coefficients of the orthogonal realization is not unique.
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Unknown d(n) e(n

System i

D1 (Z)
51 (Z)
Ds(2)
Ys Vs
Da(2) | | Na(2) | / ©

Da(2) | N P
|
|
|

Figure 32: Orthogonal IIR filter realization
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5.4 Simplified gradient orthonormal realizations

5.4.1 Lattice form algorithm

Consider first the lattice realization

N

H(z) = /CZ::() v Fr(2)

where Fi(z) = ﬁD’“((ZZ)) and Dy(z) is the k-order Szego polynomial.

The ideal update formula,

B OE{e*(n)}
2 06

— uE {e(n) agg]:) }

= oS s ) - H)

= u <a§€(:) : f(2)>

Qk(n + 1) — Qk(n) =

Because only a causal solution is interesting

(PHC) s ey - ) = (P )

= (26 g e

A similar conclusion can be obtained for the numerator coefficients vy, but
in this case

<aH(Z),S$(z)[H(z) _ H(z)]> = (Fr(2), fo+[f(2)]4)
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A stationary point with respect to v, then requires, using the decomposition
theorem, that

fo+[f(2)]4 = =7V (2)g(2)

_ 2 NDy(z! <. . . .
where g(z) € Hy and V(z) = DN This in particular implies that
Jo=0.
In order to use this expression with the denominator coefficients consider
first that

5kﬁ(z):ag€(k2) - lé VS FY ()
- §- PRI DD
- LG 1Oy
then
<5kﬁ(z),z—1V(z)g(z)> - <l_§0 yl‘sl’“)?(f)), —1V(z)g(z)>
(A V) )

6rDi(z) is a polynomial of order not exceeding [, exists ¢; such that

aD(z) _ & Dils) & oo
b~ Beps e

Dy(z) iS5

Thus, {61’“5’((5) Y, can be expressed as linear combinations of Fy(z2), ..., Fiy(2).

But these functions are orthogonal to z7!1V(2)g(2). Then the first term of
the right hand of previous equation vanish.
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Then this suggest the following update formula

b +1) = 0u() = —pe(m) N et

Because the term % still can be simplified, further approximations

can be introduced.
Consider the recursive portion of the lattice filter described by

o’ | = 0[]

or in the frequency domain

EOV((ZZ)) ( 2‘1502"))

Du(2) N

D= Q)| g (63)
D () TG

D (2) 1

Multiplying by Dy(z) and considering a row-wise partition of the orthog-
onal Hessemberg Q" (0) = [q7, ..., ql41]" matrix, that verifies

81 41(0)/n
Q' (0) = |
Snay1(0)/ v
a1 ()
where v, = I, cos b, vy = 1.

Then using the bottom row of the equation (63) we can write
Dy(z)
Dl(Z)

Dy(z) = qy(9) :
Dy(z)

Then



?0(2) 5k§0(
0 Dn(z) = 6kq%+1(6) Dl;(Z) +q%+1(9) 6kD§1(Z)
Dy (2) 5Dy (2)

150

neglecting the second term and applying the special structure of the qf (6),

0 Dn(z) = Spqiy1(0)

= 'ykz_lﬁk_l(z)

This suggest the use of the following approximation

ODy(z) _1Ek—1(2)_ —1
D) = W Dyn T B

that leads to a simplified partial gradient lattice algorithm

[ vp(n+1) [ vo(n) | [ Fo-(z)
s+ | | o) Fy(2)
Ain+1) | 7| i) + pe(n) = HG)R(2)

I QN(n—I— 1) ] I QN(n) | I —’)/NZ_lfA{&Z)FN_l(Z) |




V,,S(n)

V3

Vo

&, 4, 03
L1 L1 <—-
Vi, (n) Vi, (n) Vig(n)
9 ﬁ) 14 Vo?
0 N s
A/ A/ '<::%_
0
— ] 1]
[
WQCD

1
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Figure 33: The simplified partial gradient algorithm for a third order recursive lattice filter.
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5.4.2 Orthogonal form algorithm

e A simplified partial gradient algorithm that makes explicit use of the
properties related to the orthogonal IR filter structure with direct-form
second-order sections is discussed.

e Consider the following

Theorem: The third term of the inner product of equation (61)
is equal to zero, i.e.

-1

(G [Th s ()] S (H(2) = H(2))=0 (64)
fori,j=1,...,N/2.

e Outline of the proof: The cascade of second-order orthogonal realizations
is represented by equation (51). Then, using the decomposition theorem
with the stationary points related to [3;, coefficients, we can write

-1

(G [T sy ()] L (H(2) = H(2)))
= (55 [Tl ey wm)] V(2)0(2)

where V(2) = Viy(2) = H]]CV:/? g’:gi; and ¢(z) € Hy. Then

N/2 z N/2 =2 L 2zt
<[Ek:/1,k¢j wk(n)] » DT [ o %] 9(2))
== kg w()] Vo (2)9'(2))= 0

where ¢'(z) = 512)9(2) € Hy. The last equation vanishes because
J

the second equality is a linear combination of the basis functions now

VN/Q—l(Z)-

e Similar results can be obtained with the stationary points related to the
coefficients [, .

Then, the simplified partial gradient algorithm can be written as

f(n+1) = 0(n)— puV'(n) (65)
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where
Oy(n Oy(n n
Vi(n) = —2e(n)[24n),, Duln) oyin)
Oy(n) Oy(n Jy(n) Jdy(n
o) Qi) oyt 7 (66)
and

oyny | Fre(n)u(n) forkeven

vy { F],Z(n)u(n) for k odd (67)
WL = (e FYu(n) + vy Ff()u(n) = 5gwn) - (68)
%yﬁ(z) — <y2j_1Fjb’(g)u(n) + l/Qijb(z)u(n)) — DZ]_(ZZ)y(n) (69)

e The result is an efficient orthonormal algorithm with computational com-
plexity similar to the direct form (or lattice) realization.

e Note that, the performance of the proposed algorithm is expected to
be close to the full algorithm of equation (52) except for the iterations
before the stationary behavior is reached.

e In these iterations the results obtained through Theorem 1 can not be
applied. However, the following result is available

Lemma: The stationary points of the partial gradient algorithm
coincide with the stationary points related to the minimization

of Ele?(n)].
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0.05—0.4 271
1-1.1314 2=140.25 z—2

5.5 Examples
o 1. H(2)

1-0.25 271
1-0.12=1-0.42 -2

e 2. H(z)

RG ODE trajectories

Figure 34: ODE trajectories, Recursive Gradient algorithm, sufficient order. Example 1.
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RG ODE trajectories
1 T I)-~||'||5'" HL
. !_l:!mrn(u:!!‘.-‘@:.'g] A

Figure 35: ODE trajectories, Recursive Gradient algorithm, insufficient order. Example 1.
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RG ODE trajectories

Recursive Gradient algorithm, sufficient order Example 2.

Y

Figure 36: ODE trajectories
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Figure 37: ODE trajectories, Partial Gradient Lattice algorithm, sufficient order. Example
2.
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RG Generalized ODE trajectories

P BRS

Figure 38: ODE trajectories, Partial Gradient Orthonormal algorithm, sufficient order. E-

xample 2.
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6 The equation error perspective

An IIR extension of the FIR adaptive filter

e Stationary points (bias) and ODE associated (stability conditions).
e Unitary norm variant.

e Instrumental variables.

e Bias reduction: BRLE.



