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6.1 The Equation Error method

The function to be minimized is given by

We(n) = E{[A.(g)d(n) = Ba(q)a(n)]*} (70)
Only to introduce the EE method, consider
e v(n)is the measurement noise such that v(n) = [v(n—1),...,v(n—N)]*,
e 0 = [ay,...,an,bg,...,by]T, ie., the (monic constrained) parameter
vector.

e o(n)=[d(n—1),....,d(n— N),z(n),...,x(n — N)]¥, the regressor.

e The ideal model associated: 6y = [af,...,al b, ...

5 Yngo

boT

7 Ny

e ¢.(n)=d(n)— ¢’ (n)B(n) is the equation error: linear in the param-
eters!.
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Figure 39: Equation Error Method
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The stochastic gradient version

8(n+1) = 8(n) + pp(n)e.(n)

or the Gauss-Newton version

O(n+1) = 6(n)+ pP(n+1)p(n)e(n)
Por+1) = () (P(n)_ P(n)p(n) <n>P<n>)

1—p 4T (n)P(n)g(n)

For the strictly sufficient order case and v(n) = 0, the mean behavior of
the LMSEE algorithm can be analyzed using

E{0(n+1)} = (I - uR)E {B(n)}

where R = E{p(n)e’(n)}.

Assuming that R is positive definite, it can be decomposed as R = QAQ",
where @) is an orthogonal matrix and A is diagonal, formed with the eigen-
values of R.

Premultiplying both sides of the previous equation by Q7 it can be shown
that the resulting system converge in the mean to the solution of

6" = R™'E {p(n)d(n)}

when n — oo, if the convergence factor u satisfy

0
<ILL</\N

where Ay is the maximum eigenvalue of R.
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6.2 Generic stability properties

e Even for v(n) # 0 under certain conditions the stability of the estimate
can be guaranteed.

E{ (Bz(ésq&)l)gg(”))z} _ B{y*(n

e Define the signal-to-noise ratio by & = FT200] = E{I/z(n;]} and
0 = [a b]" and 8y = [ag by]”.
e Using (70), [R,, + Ry/x] a=-r,+ R, a9, where
Cv(n—1) ]
R, = E : [v(n—1) v(in —ng) |
| v(n = nq) |
Cv(n—1) ]
r, = FE : v(n)
| v(n = nq) |
R,, = R,—R. R'R,,

e Then, for large S,

a = ao— R, [r,+ R,a0+O(|R,R,},|I°) = ag + O(1/S)

e On the other hand, for small §, we get

a = -R)'r,+R'R
= -R,'r, +0(S)

lao + R, 'r,] + O(| R, 'R, ||°)

y/x

e Then, to summarize,

E{(i(fq)))x(”))z}

Lemma: For a signal-to-noise ratio given by S = B0

A, (q) has zeros inside the stability region if some of the following
conditions is satisfied

— S is sufficiently high.
— S is sufficiently low.
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6.3 Stationary points and ODE associated

6.3.1 The sufficient order case

Elp(n)ec(n)] =0

or alternatively

r(n—j)
5 [ %ﬁi(i ;)@) ] (2T )] 4 [ V%n) ] ()
op o

fori=1,....N,ej=0,....,N.

We can conclude that, even when v(n) is white noise, the stationary points
are not well defined, i.e., the estimates are biased.

Assuming v(n) = 0, and using the theorem and notation introduced in
chapter 4, we can rewrite the previous equation as follows

S(B, A)P(A, A, mq, MQ) h=0
where

e S(B, A) is a non singular Sylvester matrix of rank m; = n, + n,

e h is a vector of dimension my = max(N +ny, N + n,), with components
defined by the coefficients of

A(g)B(q) — A(9)B(q)

For the strictly sufficient-order case, mg = my, P(A, A, my,my) is positive
definite, and the unique solution of (6.3.1) is

A(g)B(q) — A(q)B(q) =0

then, in this case, the system can be identified and the solution of the method
1s unique.
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The ODE associated, for the stochastic gradient version algorithm, is given
by

20 — Blptme(n

and for the Gauss-Newton version

PN~ o (R (8- 9(1)
(71)
agigt) = R—-o(1)

where
R = E[¢(n)¢' (n)]
Related to equations (71), a suitable Liapunov function is the following
V((9(1) = 60), o(1)) = (9(t) — B0)" o(t)(F(t) — )
such that
(AV/dt) = —(9(t) — 80)" (R + o(1))(F(t) — 6) < 0

then V((9(t) — 8p),0(t)) is a Liapunov function for (71) that shows that
¥(t) = Oy is a unique stable solution of (71).
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Assuming no measurement noise and a unit norm constraint to define the
coefficient vector, such that

E{eX(n)} = [-a’ —bT]E{go(n)cpT(n)}[:Z]
-l L

A factorization of the covariance matrix will be useful

Ry, R\,][Iyy R;'R,;]|[ Ri— R,R;'R,, Ini
R!, R, Iy R, || RLR' Ty,

then, defining Ry, = Ry — RdeglRM, and pre and post-multiplying by
the parameter vector

E{e}(n)} = a"Ry.a+[b— R;'R,4a]"R,[b— R;'R,a]

in particular, minimizing with respect to b

E{e(n)} = a'Ry,a >0, Va#£0
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Theorem: If x(n) is persistently exciting of sufficient order, then

R/, has rank M < N, if and only if deg H(z) = N.

Now, considering z(n) white noise, it is possible to relate the previous
results with the decomposition theorem of chapter 4. To do this, consider

E{d(n)d(n — k)} = éhlth

then

ho by oo hy by
R, — 0 hy - hy

...... hy
0 0 hy My

ho Ry hn

Rfd _ 0 hg :

...... hy

0 0 hy

and R, = I. Thus, if J isan (N 4+ 1) x (N + 1) exchange matrix with ones
in the antidiagonal,

b hy b
hy  hy h
JRyJ = | 50 11"

hyyr hnio hygg -

Finally

E{e(n)} = a'Ry,a=[a'] 0']TF [ J()a]

This vanishes if only if

Ja
o [%] = o

as advanced when discussed rational approximation theory and Hankel forms.
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6.3.2 The insufficient order case

Following with the analysis without measurement noise,

e The monic constraint over the coefficient vector is ay = 1, then the
optimal choice of a is

&
e[

where o is the equation error variance under the monic constraint.

e The unit norm constraint over the coefficient vector is a’a = 1. Then
the optimal solution to

E{e(n)} = a'Ry.a

in this case is given by

Rd/xa’ = Amm(-Rd/aL‘)a’

and the minimized equation error variance becomes

a’TRd/xa’ - Amm(-Rd/aL‘)
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Some related results

o If x(n) is an AR process of order not exceding N, then the estimate
obtained for both, unit and monic constrained methods gives a minimum
phase (stable) polynomial.

o Let H (z) be the N order transfer function obtained by minimizing the
equation error variance with unit norm constraint and x(n) is white
noise, then

~

e = he k=01,..N
S e = S hihey k=1, N
(=0 (=0
éh?—éﬁ? = Anin(Rayy)
Amin(Rae) < E{2*(n)}oy 1 (Th)

IN

where oy41(I'y) is the N 4+ 1 singular value.

o Let H (z) be the N order transfer function obtained by minimizing the
equation error variance with monic constraint and x(n) is white noise,
then

hi = hy k=0,1,..,N

A A ) 2 ejkw
hihgyr — > hih = = —d E=0,1,...N
. l ]C—I—l IZ%) l ]C—I—l 27T /—7‘( |A(€jw)|2 w 3 ?

[]2

—~
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6.3.3 Example

The performance of the EE method for a system identification application is
shown in the following example.
Example 1: The plant

-1

q
d =
() =T T336 7+ oas 2o V)

where z(n) is an stochastic process generated by
x(n)=u(n) — 0.764 u(n — 2) + 0.146 u(n — 4)

where u(n) and v(n) are uncorrelated white noise of zero mean.

EE ODE trajectories

al

Figure 40: ODE trayectories for example 1, without noise
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EE ODE trajectories
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Figure 41: ODE trajectories for example 1, variance of v(n) 1.0
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6.4 Instrumental Variable Methods (IV)

e The IV method was idealized in order to avoid the biased estimates given

by the EE method.

e The regressor of instrumental variables, {(n), is chosen to be uncorre-
lated with v(n) but not independent of z(n).

E{¢(ne(n)} = B{¢(n)(d(n) - ¢" (m)B(n))} =0

where e.(n) is the equation error, {(n) is the IV regressor and ¢(n) is the
common regressor defined for the EE method.
The stochastic gradient version

O(n+1) = 8(n) + p¢(n)e.(n)

or the Gauss-Newton version

On+1) = 6(n)+ puP(n+1)¢(n)e.(n)

T
P(n+1) = (L) P(n) - iﬂ(n)ﬂf)é’ (n)P(n)
- 4 T () P(n)C ()
Defining y(n) = i”EZ;x(n), we assume the following selection of instrumen-

tal variables ¢(n)

C(n)=[yn—-1),...9(n—=N),z(n),..,x(n — M)]T
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{((n)
z(n) | oBw | d(n)
1 Al
Bl | A

ee(n)

re (n)

() correlato

Figure 42: Instrumental Variable Method variant 1.
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6.4.1 ODE associated

For this variant we can only give local convergence conditions (indefined
Liapunov function).
The ODE associated is given by

WU~ o @) (80— 90)
e~ G- ol
where G(t) = E{{(n)e’(n)}.
For the gradient version
09(t)

o = E{C(n)ec(n)}

The stationary points of the IV method can be analyzed using
S(F, Z)’P(Z, A, mq, MQ)h =0

where h is a vector of dimension my = max(N+ny, M +n,), with components
given by the coefficients of A(q)B(¢) — B(q)A(q),

If A(q) and B(q) are coprime, S(B, A) is non singular. For sufficient-order
my = my, P(A, A,mi,my) is non singular.

Then, the unique solution of (6.4) is given by

as a consequence, h; = 0, para i = 0,...,mq, i.e., 8(n) = 6y is the unique
possible solution.

Note that, independently of the stationary points, P(A, A, mi,m;) can
be singular in certain points in the parameter space .This is called generic
consistency of the method.

Since this points can exist, it is possible to find stationary points close to
them where the behavior of the method is not suitable.
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6.4.2 Example

Example 2 Consider the plant

-1

. q
d(n) = gl § q_Qx(n) + v(n)

where r is a constant to be determined, and xz(n) is given by
(n)=uln) — 2rfu(n —2) + r*u(n —4)

where u(n) and v(n) are white noise, zero mean, unit variance and uncorre-
lated. Note that the input do not satisfy the theorem of chapter 4.
The IV regressor

¢(n)=[j(n—1) g(n—2) 2(n—1)]"

P (A, A,my,my) is singular for this particular example if for the polyno-
mial A(q) = (14 2r ¢~ +1r%¢™?), the constant r is equal to 0.618.

I ODE trajectories

al
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6.5 The Bias Remedy LMSEE (BRLE)

Objective: Characterization of the bias related to the LMSEE in order to
introduce an algorithm for bias reduction.
Some definitions:

e The system identification problem is of sufficient order.
e The model to identify is given by y(n) = ¢l (n)8y where:
— 60 =[ar,...,an,, b, ... 0n)7"
—and py(n) =[y(n —1),...,y(n —ny),x(n), ..., x(n —ny)]".
i.e., we use the monic constraint.
e ¢o(n) =d(n) — y(n) is the output error, where:
—d(n) =y(n) +v(n)
= §(n) = @(n)' O(n).

o p(n)=¢wyn)+ [ V(On) ] where, v(n) = [v(n—1),...,v(n — N)] .

e co(n) —e(n) = B(n)" [ eo(()n) ], where, eg(n) = [eg(n — 1),...,ep(n —
N,
In order to analyze the bias of the LMSEE, consider

B(n +1) = 8(n) + pp(m)d(n) — p(n)" B(n)]

that can be rewritten as

6(n+1) = 8(n) -+ pp(n)—(n)76(n) + v(n) + T (1)
= 8(n) + pl—(n)p(n)' 6(n) + @(n)v(n) + @(n)p; (n)60]
(72)
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Assuming convergence in the mean, i.e.,

lim B{0(n + 1)} = Jim F{0(n)} (73

then equation (72) becomes

E{6(n+1)} = E{8(n)} — u[E{p(n)p(n) 0(n)}
— E{p(nv(n)} — E{e(n)eg (1)8o}]
— E{6(n)} — u[B1 — B2 — B3] (74)

Since was assumed that ¢(n) is uncorrelated with 6(n), we obtain

p1 = E{iegn+ | "5 e+ 75 |17} o)

= (@+DEBM)}
B2 = E{[cpo(n)—l— _V(n)_]y(n)}:E{[V%n)]y(n)}
[ v(

B3 = E{lem+ | " et} o0 =6
)

where: Q = E{p,(n)pl(n)}, X =E { [ ”g” ] [I/T(n)()]}.

In this way, equation (74) can be rewritten as follows

E(0(n+ 1} = E(0) - pl@+ D)E(000) - £{ | ) [ vt} - e
(75)
where, by (73)

Jin E-0) = (@04 27E {70 | vt + 260
In order to eliminate the bias it is necessary that ¥ = E [ ”(O”) ] [I/(n)TO]} _

and E { [ ”%”) ] I/(n)} = 0. In this case

lim £{O(n)} = 6,

n—oo
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In a general case it is necessary to eliminate in equation (75) the factor

Cy defined by

@)

Cy = —SE{6(n)}+E { [ vin) ] I/(n)}
_ _E“u%n)]{[u%n)rg(n)_y(n)}}

to achieve the objective of bias elimination.
Assuming convergence of the LMSEE, we must have v(n) & ¢y(n), then a
possible choice of the bias compensation factor is

C'=_”?ﬂ{mm—[”“ﬂ§m»

O

112

%“:www—[%yﬂzm»
.

™ e(n)

where, by making p. = ur, we obtain

0

that define the Bias Remedy Least Mean Squares Equation Error
(BRLE) method.

Blu-+1) =80 + et = 7| 4" ) (76)
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6.5.1 Analysis of convergence in the mean

Objective: to which point the stability of the LMSEE method can be main-
tained while the bias reduction of BRLE is achieved.
The analysis is based in the coefficient error defined by

E{0(n+1)} = F{0(n+1)— 6y} (77)

Using (76), we can rewrite this equation as

E{8(n+1)} = E{8(n)+ pp.(n)(d(n) — ¢ (n)8(n))} — 8,  (78)

and considering that

A(n) - ¢ (m)8(n) = L ()80 +v(n) — " ()8(n)
v(n

= 60— 8+ v - | “0 | o) (19

and defining

R = (I pE{p(n)e" (n)}) (80)

equation (78) can be rewritten as

B+ 1} = (R-ubrn | 5" | o70)) £

e (1= o) | 757 o= | 70| e
= (R- A1(n))E{é(n)} + By(n) (81)

where

A = wEtr(n | €40 | )
B = (-0 [ 9 oo =[50 oy e

The asymptotic convergence of (81) can be demonstrated using the quasi-
invariant system theorem introduced in chapter 4.



Theorem: The equation E{é(n +1)} is asymptotically stable if the

following conditions are satisfied
1. 0 < 7(n) < min(1, m), for a constant e > 0;
2. 0 < p < min(uy, %), where Ay is the maximum eigenvalue of

E{p(n)e’(n)}, and p is a positive constant.
Outline of the Proof: It is necessary to show

1. That the homogeneous part of (81) is asymptotically stable.
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Since the eigenvalues of R are inside the unit circle, it is possible to

define a transition matrix ®(n) that satisfy

(@) < ef”

(83)

where ¢ > 0 e 0 < < 1. Assuming that 0 < E{||¢(n)||} < p, is easy

to show that

[A()]| < epp =14

(84)

then by chosen 0 < p < py = =0 "we have 0 < B+¢6 < 1. Then, follow-

cep’

ing the quasi-invariant system theorem, the homogeneous part defined

by

w(n+1) = (R + Ay(n)Juy(n)
is asymptotically stable.
2. That the disturbance part of (81) is bounded.

(85)

For 0 < 7(n) < 1, this can be shown using (82), since ||Bi(n)|| <
pr + pr||al|, where a® = [a;...ax]" and r is an upper bound of the noise

variance.

Finally, note that asymptotic convergence is achieved if, considering the

bounded disturbance term Bj(n), the bias reduction parameter 7(n) satisfies,

7(n) — 1, i.e., By(n) — 0, or

E{0(n+1)} =0 forn—
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6.5.2 Example

ERLE ODE trajectories

, variance of v(n) 1.0

Figure 44: ODE trajectories for example 1
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7 Hyperstable adaptive filter

HARF, an stable but incomplete solution

e Hyperstability theorem application.
e Stationary points and ODE associated.
e SHARF algorithm.

e Discussion of the insufficient order case.
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7.1 Introduction

e In this chapter is shown the application of stability theory concepts
related to a non linear feedback system previously introduced in chapter

4.

e The main aspect of the algorithms is its theoretical asymptotic stability,
that in real world applications is severely constrained by a positive real
condition.

e This stability property, or hyperstability, has been useful in many control
applications, where bounded variables are more important than conver-
gence speed or MSE performance of a parameter updating algorithm.

e An important concern with the practical utilization of this family of
algorithms is in the undermodelled case, where convergence properties
are not well defined.
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7.2 Review of the LMS with a posteriori error

e Consider the use of a posteriori prediction error in a FIR filter,

g(n) = ¢ (n)8(n+1)

where j(n) = ¢* (n)8(n) and ¢(n) = [j(n — 1) ...5(n — N) z(n)...x(n —
N,

e In the FIR case, the use of the a posteriori error can lead to faster
convergence and improved estimate variance.

e Then, we can write

O(n +1) = 8(n) + p(n)e(n)

where 8(n) = [fy(n) ...0x(n)]T, x(n) = [2(n)..x(n — N)]”, and e(n) =
d(n) — x76(n).

e And the a posteriori prediction error algorithm can be obtained as follows

O(n+1) = 6(n) + ”% {%éQ(n)} (86)

with e(n) = d(n) — 2¥ bj(n+Da(n —j) = d(n) — 2" (n)B(n + 1), then

e But
e(n) = dn)—x'(n)8(n+1)
= d(n)—x"(n)8(n)+x"(n)8(n) — x" (n)8(n +1)
= e(n) —a' (n)[(n+1) — O(n)]
= e(n) —x' (n)pxz(n)e(n)
= e(n)/[1 +a" (n)uz(n)]
such that

[d(n) — =" (n)6(n + 1)]

O(n+1)=86(n)+ px(n) 1+ 2T (n)px(n)]

similarly to the normalized LMS algorithm.
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e For the IIR adaptive filter case, we can obtain, through a similar proce-
dure

. T — . .. .
e Since ¢ (n)urp(n) do not have, in general, a positive definite form, we
introduce the slow convergence approzimation in order to obtain

L+¢' (n)pgh(n) ~ 1
e Then

8(n+1)=8(n) + pp(n)[d(n) — ¢ (n)]
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7.3 Stable adaptive filter based in a nonlinear system

e Note that the model for the a posteriori prediction error for the FIR
case can be written

N
y(n) = ZO bi(n + 1)x(n — j)
j:
where was assumed that
N
d(n) = Z%)b?x(n —7J)
j:

e Then

en) = d(n) —g(n) = d(n) — & (0)8(n +1)
= 2" (m)f(n+1)

with é(n +1)=6,—0(n+1).

e For the IIR adaptive filter, with

e(n) = d(n)-y(n)
= > ajld(n—i) =y(n — )] + X laf — ai(n+ Dy(n — 1)

+éw—mm+num—ﬁ

— %afé(n —)+ aT(n)é(n +1)

or
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7.3.1 Stability of the homogeneous error system

e For the FIR case

O(n+1) = 0(n)+ px(n)x’ (n)B(n+1)

e Then

D

B(n+1) = B(n) - pa(n)a’ (n)8(n+1)

or

B(n+1) = [I— pa(n)2"(m]"8(n)

e This is the state equation formulation of an homogeneous system with
transition matrix given by

I — pae(n)a’ (n)] ™!

e It is not hard to shown, using the previous formulation, that

6 (n+ L)' 8(n +1) — B(n)u~0(n) = (2 + 2" (m)ua(n))2(n) < 0

e If the condition of persistent excitation over &(n) is satisfied, this system
is globally asymptotically stable.

e Note that, without considering a noise term, a similar equation can be
obtained for the Equation Error method (in fact a FIR filter under this
point of view!).



|

&7 ()T (n)

A
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—p(n)

A 4

Figure 45: Homogeneous error system for a FIR adaptive algorithm
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e Objective, work with the IIR adaptive filter case, but using the output
error.

e Consider an algorithm as follows [Feintuch, 1976]

8(n+1) = 8(n) + pp(n)e(n)
then, the homogeneous error system associated is

Blu-+1) = 8 = ) {18 ()l + 1)}

that represent a non linear (also time-variant) homogeneous error sys-
tem.

Under which conditions this system maintain the stability of the FIR case?

—_
|
—_
=
~—

A 4

|
<
—~
3
~—
=
©
—~
3
~—
A

Figure 46: Homogeneous error system for a [IR adaptive algorithm
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Rewritten the theorem of section 4.5.2, we can present general conditions of
stability,

Theorem: Consider the general homogeneous error system of the
figure. This system is globally asymptotically stable if the following
conditions are satisfied:

e H(z)isstrictly positivereal (i.e., Re[H(z)] > 0, forall |z| =1).
o %ET(n) pp(n) — A > 0 for all n (uniform observability).

In terms of the error €(n) of the figure, the global stability implies that:

e(n) =0, for n— oo

and also that the states of H(z) are bounded.

>
|

—

=
~—

=
—~

=
~—
A

Figure 47: General homogeneous error system for an IIR adaptive algorithm
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e These conditions are trivially verified for the FIR adaptive filter homo-
geneous error system model, since H(¢q) =1 and A = 0.

e For the homogeneous error system related to the ITR adaptive filter the
SPR condition of the theorem introduce a condition to the systems where
stability of the IIR adaptive filter can be guaranteed, i.e.

e For a second order system, for example the SPR conditions is satisfied
for the plant inside the dashed region of the unit circle.

Im{q)
UNIT CIRCLE

REGION

Re(q)

Figure 48: SPR condition of a second order system.
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e A form to overcome this limitation is the introduction of a filtering or
smoothing error, €(n), defined by

e(n)=¢e(n)+ g:l die(n — 1) = D(q)e(n)

e This smoothing error used in the previous equation determines the fol-
lowing algorithm

O(n +1) = 6(n) + up(n)e(n)

e Note that

en) = d(n)—@ (n)0(n+1)+ % die(n — i)]

=1
T

= d(n) = @' ()8(n)+¢ (n)[B(n) — 6(n+1)]
—|—i221 die(n — i)

= =3 )] )~ 3 ()00 + X dieln = i

e The Hyperstability theorem in this model implies that, for e(n) — 0
(i.e., e(n) — 0), then 8(n + 1) is bounded.
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a
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d1= 0
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Relq)

f N

Figure 49: SPR condition of a second order system with different compensators.
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e A simplified version of this algorithm, called the Simple Hyperstable
Adaptive Filter (SHARF) is the following

O(n +1) = 6(n) + pp(n)e(n)

where e(n) = e(n) + X, die(n — ).

e In particular, if D(¢) is time varying (adjusted at each iteration) such
that

the proposed algorithm can be seen as a variant of the Instrumental
Variable methods. Under the Hyperstability theory this algorithm was
proposed initially by Landau (1978).
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7.3.2 Forced error system

e Assuming now that measurement noise exist,

e(n) =d(n) = gy(n) +r(n)

e A possible extension of the previous discussion is to use an ARMAX
model

d(n) = (1 = A(q))d(n) + B(q)x(n) + C(q)v(n)
where v(n) is zero mean, white noise uncorrelated with z(n).

e Following similar steps than with the homogeneous error system we can
obtain the following model for the forced error system

7(n) = i ) ()80 + 1))+ v(n)

where p(n) = [d(n—1)...d(n—N)x(n)...e(n—N)e(n—1)...e(n— P)]".

e The SPR condition now must be verified over %

e On the other hand, the existence of the term v(n) in the previous equa-
tion indicates the noisy convergence of this algorithm.
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7.4 ODE associated
The ODE associated to the HARF method, and in particular to the SHARF

algorithm using the slow convergence approximation, is the following

PN~ B’ (n)(O(m) — 0,))
= RO(1)
where
P(n) = [%dm BT %dm CNYoxn)an— N (87)
and

R =E{¢(n)¢" (n)}

To study a Liapunov function related to the stability analysis of the ODE
consider the following

Lemma: Suppose deg ﬁ(z) = N. If Z((j)) is SPR then R+ R” is

positive definite.

With this result, choose as Liapunov function the following
1
V(9(1) = S[19(t) - 6|

such that

(aV/dt) &T(t)a’;—ff)+(a’;—ff)) d(1)

—9 (t)(R+ RT)9(1)
0

IN
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7.5 The insufficient order case

The forced error system can be used in the insufficient order case,
d(n) = dag(n) + dy ()

where dy;(n) is the modelable part of the plant. In such situation

on) = S afduln— i) —g0n— i) + 8" ()B(n + 1) + du(n)

=1

1 —7,
——|p (n)B(n+ 1)+ dy(n
Then, using the idea of error smoothing we obtain

O+ = 800 = 6 | 506 (0 + 1)+ Dlayin (o)

This is meaningful if the modelable part dy(n) = H(z)x(n), represent a

stationary point of the algorithm.
Consider the ODE associated to the SHARF

x(n) ] [ 1
ove = B[ T T = (] 7 L sopeme) - )
L z(n—N) | I 2N
[ g(n—1) ] [ 27!
Oy = E ; e(n) :< ; H(z),Sgg(z)D(z)[H(z)—H(z)]>
 yg(n—N) | I 2N
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If f(z) = 222 frz™" = Su(2)D(2)[H(z) — H(z)], the first equation is
satisfied if and only if: fr = 0, for k =0,1,.... N, or [f(2)]+ = 2~V +Dg(2).

Then, in the second equation

I
|
=
1L
B
N
I
S
~
N
I
=
+
~—

A

={| ¢ | B
| AL)
1/A(2)

= {| ¢ [BEe)
| AG)

since the second operand is a causal function, and assuming no pole-zero can-
cellations, by using the decomposition theorem it must be g(z) = V(2)Q(z)
for some Q(z) € H,.

Theorem: Suppose ﬁ(z) has no pole-zero cancellations, then ﬁ(z)
is a stationary point if and only if fj =0 and

()] = =TV (E)Q(),
for some Q(z) € Ho.
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Corollary: Suppose H (z) has no pole-zero cancellations and the
input is white, then H(z) is a stationary point if and only if

H(z)—H(z) = ="V ()Q' (),
for some Q'(z) € Hs.

then this leads to a stationary point similar to an N + 1-sample Padé ap-

proximant to H(z).
Note that, since V(z71)H(z) is an anticausal function, then multiplying
the previous equation by V(z71) results in

VHHE = =~ OHQ(2)

which can be written as ¢/ = I' yv, or explicitly

0]
: Vo

0 v
/ = Iy :
90 b2
0 '

in the sufficient order case, if v is orthogonal to the first NV rows of I'; then
it is orthogonal to all rows, giving I'yv = 0.

In the undermodelled case, < H(z),27*V(z) >= 0, for k = 1,2,..., N,
need not correspond to good approximation of H(z).
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1—2z71

e r(n) unit variance white noise (no measurement noise).
1—2=140.25 2—2"

7.6 Some examples

OE (Landau) ODE trajectories

al

3 -~ N Q-

T T T T T
i i i i i
| ] ] | ]
| ] ] | ]
| ] ] | ]
| ] ] | ]
| ] ] | ]
F=--—-"r===fF-==°a--=-==-=--7---
| ] ] | ]
| ] ] | ]
| ] ] | ]
| ] ] | ]
| ] ] | ]
1 ] ] 1 !
v
|

[y Y

Figure 50: ODE trajectories of OQutput error (Landau) method.
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SHARF ODE trajectories

al

Figure 51: ODE trajectories of SHARF algorithm (D(z) ideal).
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SHARF ODE trajectories

al

s,

2

insufficient order (order zero numerator).

Y

Figure 52: ODE trajectories of SHARF algorithm
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8 Steiglitz-M cBride method

The closest approximation to the global minimum

e Stationary points and ODE associated (local convergence).
e The reduced order case.

e Bound on the MSE related to the MSOE.

e Direct-form realization.

e Other realizations: lattice, orthonormal.



