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8.1 Introduction

Consider, as in the previous chapters, that

_ B(q)
1) =)

To estimate the parameter associated to A(q) and B(g), the following
function was proposed

r(n) +v(n) =yn)+v(n)

100 +1)) = { (A0 {7 = Bt {0 } 9

In order to obtain 6(n + 1), (88) is minimized assuming known 6(n), i.e.,
a LS problem at the (n + 1)-th iteration.

v(n)
z(n) l X % { d(n
Anl(q) Anl(q)
| z(n) | dsn)
Bn+1(9) An+1(q)
es(n)

Figure 53: The Steiglitz-McBride method
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Related to equation (88), the following definitions are useful

_ 0 0 0 o 17
0, = [af,...a; by, ....b

the ideal coefficients,

O(n) = [a1(n),...an,(n),bo(n), ..., bnb(n)]T

the estimated or filter coefficients,

:[d(n—l) din — N) x(n) x(n—M)]T
Aug) 0 Anle) T Au@) T Auld)

the regressor related to the SM method.

p(n)

Then, asymptotically, the Least Squared solution of equation (88) can be
written as follows

O(n+1) = [E{p(m)¢"(n)}] " E {¢(”)ji?q))}

— 0(n) + [E{p(n)d"(n)}] " E{$(n)es(n)}

where es(n) = j(?q)) — ¢ (n)8(n).
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8.1.1 Generic stability

As a direct extension of the EE method properties, at a stationary point (88)
1s

J0) = ol —bT1E{¢<n>¢T<n>}[iZ]

! FET L
T T R; R, a
= [_a’ - b ] f T ¥ —b
Rxd Rx
where Rf E{ An J n_j} R = F{ A" ) ” Jl }and R/ = E{A rf(ln(—zj))}
The factorlzatlon of the covariance matrlx 1s useful
/ f T f_l f f f T f—l f T
Rd Rl’d :[ IN‘H Rl‘ Rl‘d ] Rd o Rxd Rx Rxd IJ“V—H 1
R/, R/ Iy R/ || R R Iy,

and by defining Rd/x = Rg — R£ Rf 1Rxd, and pre and post-multiplying
by the parameter vector
J(0) = Rd/xa’ +[b - Ri_lRida]TRi[b - Ri_leda]

Minimizing with respect to b

E{c/(n)} = a"Rj,a

Now, with the monic constraint on a (aty = 1, with ¥ = [1,0,...,0]7),
this last equation leads to

Rd/xa = o’

where o, is the value of J(8) at the minimum.
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Theorem

o Sufficient order case. With deg H(z) = N and for a signal-to-

E{(%x(n))z}
. 7 Bz} 0 N
the stability region if some of the following conditions is satis-

fied

— S is sufficiently high.
— S is sufficiently low.

o Insufficient order case. With deq H(z) > N, then A,(q) has

zeros inside the stability region if z(n) is white noise.

noise ratio given by S = , An(q) has zeros inside

The second part of the theorem is a direct extension of the result discussed
for the EE method, and follows from

Lemma: Let the sequences x/(n) and d’(n), related by

df(n) = H(z)uf(n) + l/f(n)

where H(z) is stable and causal, and where the disturbance v/ (n) is
statistically independent of #/(n). If 2/(n) is an AR process of order
not exceding N, then A,(¢q) obtained with the monic constraint in
the SM method has zeros inside the stability region.

Now if x(n) is white, /(n) is an N order AR process and the previous
lemma guarantee the stability of the estimate.
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8.1.2 Stationary points

The basic equations related to the SM iteration are

R),a = ol (89)
R/b = R, (90)

Based on the definitions of the variables involved, the second equation can

be rewritten as

1/A,(2)
< z‘l/{ln(z)

Onvy = :
A

Then at any stationary point, i.e., 4,11(z) = A,(2),

1/A(2)
ova = (| 7 s e - ae))
|27V A(2)
Then, assuming S,(z) |[H(z) — H(z)| = f(2) = T2 fez™", and using

the decomposition theorem,

[f(2)]s = z7'V(2)g(2) g(2) €Hy and fy=0

where V(z) = Z_NA’?g_l).
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On the other hand, (89) can be rewritten as

‘1/A ()

A ( ) i1 Bnii(2)
Oy = : H(z),S H(z) -
l/f n—l
+E{ n—l—lV }
Vf n—

and at a stationary point this reads as
27HA(2)

= (|

Assuming for a moment that v(n) =0

/AG) ]

VA
JA()

VA |

After some reordering, using the V(z) definition,

H(:).S,(2) [H(:) - H(:)))

H(:), 2_1V(z)g(z)>

1/A(2)
I/AG)

o]
2~V JA()

Then, by the decomposition theorem, this is satisfied if z[H(2)g(z71)]; =
V(2)Q(2).

B9 )
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A complementary result here is the following

<H (2) = H(2),S:(2)[H(2) — H(z)]> -

= (:V(2)Q(2).2'V(2)) = (Q(2).1) = Q(0)

(the second term of the third equation vanish because ﬁ(z)V(z‘l) is anti-
causal).

Theorem: (noise free case) Let f(z) = S,.(2) [H(z) — ﬁ(z)] ﬁ(z) €
Hs is a stationary point of the SM iteration if and only if:
o fo =0 and [f(2)]y = 27V (2)g(2), g(z) € Hy, that satisfies
[H(2)g(:"H]y = 271V (2)Q(2), for some Q(z) € Ho.
e Also, the error in Ly norm is: <H(z) — H(2),S.(2)[H(z) — ﬁ(z)]> =
Q(0).
o If deg H(z) = N (sufficient order) and R(z) = [H(z)g(z71)];.

e But deg R(z) < N, then if R(z) is not zero it can have at most N zeros.
Since it is strictly causal, it must have a zero at z = 0, i.e., R(0) = 0.

e Then zR(2) = z[H(2)g(z71)];, a causal function now has N — 1 zeros.

e But, by the theorem z[H(z)g(z71)], = V(2)Q(2), N zeros outside the
unit circle (i.e., those of V(z)), but this is impossible, at least than
R(z) =0, 0or Q(z) =0.

o Then, (H(z) = H(2),8,(x)[H(z) — H(2)]) = 0.

e For a general input x(n), this is not the case for the MSOE minimization.
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e Note that R(z) = [H(2)g™!]4 in matrix form is

r hy hy hg -+ 1| go
ro | | he hg ha oo || @

rs | | hy hy hy - || g2

or r = I'yg. For the sufficient order case, r = 0, and the relationship
with Hankel form is evident.

e For the undermodelled case, R(z) = 271V (2)Q(z) appears as

vo 0 0 -] qo hi hy hg --- || g
vy vg 0 .- @ ho hg hyg --- g1

ve v1 vy - || g | | hy ha hy oo || g2

or Vq = I'yg. As will be discussed, this will give an approximate
solution to I'y.
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If we consider the disturbance term, the previous result generalizes to the
following

Theorem: Let f(z) = S,(z) [H(z) — ﬁ(z)] ﬁ(z) € Hs is a sta-
tionary point of the SM iteration if and only if:
o fo =0 and [f(2)]y = 27V (2)g(2), g(z) € Hy, that satisfies
[H(2)g(z D]y +[Se(2)]4 = 271V (2)Q(2), for some Q(z) € Ho.
e Also, the error in Ly norm is: <H(z) — H(2),S.(2)[H(z) — ﬁ(z)]> =
Q0)— < Su(2), 271V (z) >.

this can leads to an interpolation interpretation that extend the results dis-

posable for the EE method,

Corollary: If z(n) is white noise,
e H(z)— H(z) = z‘}V(z)gSz), for some g(z) € Hs.
o [HE G, — [HEDAG)], = V00 - 8.6

e The first condition reads as H(a;) = H(ay) and H(0) = H(0), k =
1, V.

s
e Defining ry = 72 hihiyr and 7 = 272, izlizl+k, the second part can be
written as Y50, fag| = Y, mag + [S(2)]4].zarrs k=1, N.
this leads to interpolation constraints similar to those obtained with the

unit norm equation error, but now at the reciprocal of the poles of H (2)
not at z = 0 as in the EE case.
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8.2 On-line algorithm

Considering signal processing applications an on-line version of the SM method
is important. Some basic approach are the following

e Ljung propose the following error

in) = 4 et
An(g)

— To(0) eo(n)

is the output error. On the other side, Fan consider that e;(n) = e,(n).

e The basic difference between the independent filtering algorithm pro-
posed by Fan, and the OE method studied is that in the latter the
regressor is composed of filtered versions of the adaptive filter output
and in the former the regressor is composed of filtered versions of d(n).

Then, a suitable realization for on-line adaptive filtering of the SM method
is the following

Pt = L |pgy PSS 0P
—— ¢ (MP()¢(n)
O(n+1) = 6(n)+aP(n+1)p(n)es(n)

where « is the convergence factor. Making P(n + 1) = I, we obtain the
stochastic gradient version algorithm, given by

O(n+1)=6(n)+ ap(n)es(n)



y(n) An(g)
z(n) TY  e,(n) : Update
_Q | T
|
/ : FEquations
|
Bn(q) g](n) :
An(q) :
| | |
| ] |
| A,
! = zy(n) :
I : |
L. B il

Figure 54: Block diagram of the on-line Steiglitz-McBride method.
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8.2.1 ODE associated

The ODE associated to the SM method in the on-line version, assuming white
measurement noise and a stability check mechanism, is the following

09(1)

= = Ble(ne ()
— —G(8(1) - 6,)

where ¢'(n) = e,(n) and e,(n) is the output error,

d(n—1) din—N) x(n) x(n — N)]T

L0 T A AT A &)

and
G = E{¢(n)¢" (n)}

and for the Gauss-Newton version

WU~ o (1@ (8, - 90)
Q%Q::G—Q@
The Liapunov function related to the ODE analysis is given by
V(1) = S(6(1) ~ 6,7 (8(1) ~ 6.)
such that
I R R s RUCEYS
= —(6(t) - 6,)' G(6(t) - 8,)

<0

As in the OE method, the stability check for this algorithm is not trivial,
specially for a direct form adaptive filter realization.



8.3 Relationship between the MSOE and MSSME

8.3.1 Structural interpretation and stationary points

Consider a:f(n) and df(n) rewritten as

xf(n) ai(n) as(n) an(n) 1 wl(n—1)
wf(n—1) 1 0 0 0 xf(n—2)
s | 0o 1 .- i s
wf(n— (N -1)) : .. 0 0| Ymn-N)
f(n — N) 0 e 0 1 0 z(n)
( wf(n—1)
i (n—2)
= Qu(n) ;
f(n — N)
L x(n)
d’(n) | ( d(n—1)
d(n—1) df(n —2)
: = Qu(n) 5
d'(n - (N —1)) d(n — N)
d(n — N) d(n)
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in particular Q,(n) is invertible, i.e, [Q(n)] 7 Q4(n) = Ix41. Also, if g} (n)

denote the final row of [@,(n)]™!, then

q4(n) ay(n)] = a’ (n)
q4(n)Qy(n)

Then the SM error can be written as

[1&1(71)
[0---01]

d’ (n) v/(n)
en+1) = gi(n+1) : —b'(n+1) :
d(n — N) f(n — N)
df(n‘— 1) o (n)
= qq(n+1)Qqy(n) df (n _ S b’ (n+1) i 5_ -
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Then, the Steiglitz-McBride method can be realized based on the following
properties of (), matrix

e (), is invertible.
e (), is uniquely determined from N free parameters.

e This parameters can be uniquely deduced from the last row of chl(:

Qi)

Remembering chapter 4, this can be obtained, for example, for the lattice
realization and the general orthonormal realization.
For the lattice realization, @Q; = Q,Q>...Q y and

I,
0, - —sinf, cosb,
ko cosf, sind,

then by chosen the respective filtered variables,

[ r(z;(:)l) | = quom) [ rm% ]
[ u(;l(;‘)l) | = Qo) [ Z((z)) ]
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Figure 55: Structural interpretation of the SM method.

The error is

e(n+1) = qu(nJrl)[“(nH)]—uT(nH)[’“(n:l)]
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where

1, cos ;
0 . u
. sin 0 [1;2, cos 0
q(0) = Q| 1| = :
1 sinthetay_1 cos 8y
sin 0y

then, in terms of the lattice parameters the SM method reads as
_ 17 T R,(6(n)) R..'(0(n) ][ a(n+1)
Po= et ) = DN R o) R0 || —vin+1)

Minimizing .J with respect to v results in R,v(n+1) = R,,q(n+1), that
substituted in the previous equation gives

Jo = q'(n+1) [R,(0(n)) — Ry, (0(n)) R, (6(n))R.u(6(n))] q(n +1)
= ¢ (n+1)R,;.(0(n))g(n +1)

Since, g¢"'q = 1, this is equivalent to

q' (n+1)R,;.(0(n))q(n +1)

T = q"(n+1)g(n+1)

that represents the Rayleigh quotient related to R, /., and in particular

g'(n+ 1R, (0(n))g(n +1)
q"(n+1)g(n+1)

Theorem: Convergence points of the SM method. Let #(n 4+ 1) =
#(n) denote any convergent point (if one exists). Then

R, (0(n))g(n+1) = Apin(Ru/r)q(n +1)

The resulting output error has variance

~

E{(d(n) = H(=)x(n))*} = Ain(Ryyr)
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To relate this result with the direct-form realization

Theorem: Let ﬁ(z) be a stationary point of the direct-form SM.
1. If v and @ are the lattice parameters of ﬁ(z), then

R(6)a(6) = Aq(6)
Rr(e)’/ = Rruq(e)

for some eigenvalue A of R, /,. Conversely, if 8 and v are com-

patible with these equations, then the resulting ﬁ(z) is a sta-
tionary point of the direct-form iteration as well.

2. If the input x(n) is white noise, the eigenvalue A from the first
part is necessarily an extremal eigenvalue of R, ,.

Remarks

e )\ is not an extremal eigenvalue in the first part of the theorem. Then
any stationary points of the direct-form realization is not translated to
a stationary point of the lattice realization.

e By contrast in the second part, and only for white noise input, the
unique eigenvalue is an extremal one, an the mapping conversion leads
to coincident stationary points for both realizations.
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8.3.2 An a priori error bound

If P, >0 and Py > 0, then /\m—i—n—l—l[Pl + PQ] < /\m[Pl] + /\n[PQ]
Then, with P, = Ru/r|d(n):H(z)x(n) and Py = Ru|d(n)zy(n), Ru/r =P+ P

and

Amin[Ryy] = Ava1[Ryy] < Avpa[Pr] 4+ M [Po)

To find an eigenvalue bound of A,,;,[R, /r] it is equivalent to find an eigen-
value bound for the signal induced part and for the noise induced part.

For the signal induced part and x(n) white.
u(n + 1) and r(n + 1) in terms of the orthogonal lattice filter transfer
functions Fi(z),

Fy(z)

Fy(z) |

Fy(z) ]
[r(g(:)l)] = FN_:l(z) v(n)

Fy(z)

and define the following orthogonal expansion in Hs,

Fi(=)H(z) = i;izl’ka(z) hup =< F(2)H(2), Fy(2) >

in such a way that: < Fi(2)H(z), Fi(z)H(z) >= 32, ]Nllkilzk
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Then
B un+1) ] [un+1)]"
fu = E“ s(n) ” s(n) }
[ < FO(Z)H(Z),FO(Z)H(Z) > e < FO(Z)H(Z),FN(z)H(z) >
< Py H (), Fy(4)H(2) > -+ < Fy(2)H(2). Fy(2)H(2) >
_ ilo,o ilO,l ilo,N ilo,N+1 |
illO illl illN lNllN—l—l T
= S X PR AN
I ilN,O ilN,l e ilN,N ilN,N+1 e
similarly

R!, = E““(g(:)l)] [r<n+1>r}

< FO(Z)H(Z),FO(Z) > - < FO(Z)H(Z),FN(Z) >

< FN(Z)H('Z),FQ(Z)% oo < Fy(2)H(2), Ful(2) >

hoo hop -+ how
_ hig hip -+ hiy o
i hyo hyi -+ hyy ]

and R, = Iy,i. This results in

R,, = R,— R, ,R'R,,

honet Tonse hongs
hivyr hings hiyer -+ i

Ayl hwvovie by e
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It is interesting now to rewrite the previous equation pursuing a form
similar to a Hankel matrix. To do this, consider that

hiver = < Fi(2)H(2), FN—i—k( )
= <Fl(Z)H( ),z *V(2)

H(z), = "F(z"HV(z) >

H(z),2"Fi(z) >

>
>
z

where in particular Fl(z) = g’v((z;l)) Z_ND?VN(S*) — Z‘Jgél((j)_l). Since these are

causal functions (with the first N —1 coefficients of 2=V D;(z7!) equal to zero),
it can be expanded as

FJ(Z) = > fl,kz_k
ki

in such a way that we can write: izl’NJrk =< H(z),z‘kﬁl(z) >= hkfl’o +
his1fin + hesofio + - -+ Using this

R,, = R,— R, ,R.'R,,

_ Jf0,0 in,l ]io,z o | T hy hy hy -
_ fl,O fl,l f1,2 hQ h3 h4 T
- : ot o || hy hy By .- r'yC
fNo fN1 fN,z R

:CI‘ c’

considering that C has orthonormal rows and using the fact that for a sym-
metric positive definite R, then P = CRC”, where C has orthonormal rows
then

M[P] < oy[R|

we can arrive to the following result

Amin [Ru/r] < 0N+1(PH)
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Considering in general the noise induced term and the signal induced term
we have the following

Lemma (eingenvalue bounds). Suppose 8 such that |0, < 7/2,
then
e The noise induced component to R, , satisfies: \{[R,]| < supuS,(e7?).
e If the input is white noise, the signal induced component to
R, satisfies: A\ [R, )] < E{2*(n)}oni1(Tx)

Based on this result

Theorem: Suppose the input z(n) is white noise, and let ﬁ(z) be
the Nth-order transfer function obtained at any stationary point of

the SM method. Then

max, S,(e/*) — E{v?*(n)}
E{a?(n)}

Note that, in the noise free case for example, this reduces to ||[H(z) —

V() = HE < one+

ﬁ(z)Hg < on41. From chapter 5 we know that for MSOE minimization, the
global minimum satisfies |H(z) — Hy,(2)||2 < on41, then

[1H ()~ ) = [H(=) ~ Hi ()]s
< H:) = H o+ IHE) = Hi (Gl < 2080

1H(2) = H(2)]:
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8.4 On-line realizations

8.4.1 Lattice realization

Based on the error

e(n+1) = qT(n+1)[u(n+1)]—uT(n+1)[’“(”+1)]

s(n) x(n)

then an algorithm for the coefficients updating reads as

ve(n+1) = vi(n)+ pe(n)Vy,(n)
Op(n+1) = Or(n)+ pe(n)Vy,(n)

Vi, (n) 519"
Consider : = : [ u(?(:)l) ]
Vi (1) Sng'
and the fact that the orthogonal Hessemberg Q' () = [q7, ..., g%, ;|7 matrix
verifies

51Q%+1(€)/%
SO = g )
Q%H(e)

where v, = I} 4, cos 6, yv =1, then

70
| @ [ s(n)
| "N4+1
with e(n) = ry — vt T(Z(:)l) ] and
Vi, (n) n " ro
VgN-(n) 7”‘]\7
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0, 0 05
L] k1
w(n) rs(n+1) ro(n+1) ri(n+1)
Viy(n) Vi, (n) Vi (n) Vi (n)
O
Vs V9 1 y
~ e ji y(n)
\/ \/ \/ l
H(:) -

1 o, 1, I
] | :B

us(n) us(n) uy(n)
73 V2 71 A
Vo, (n) Vo, (n) Vo ()

Figure 56: SM lattice realization
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8.4.2 Orthonormal realization

For the particular case of real poles, the basis functions is

— -1
ap kg —a,

F = 92
(2) 1 —apg™! nl;Il 1 —anq™! 62)

where ay is the k-th pole and o = /1 — a% i1s a normalization constant.

e Each function can be represented in a recursive form

ri(n) ) T wi(n)
A b\ _ (a4«
@i= (Qi Pi) B (Oéi _ai)
where u;(n) is the input to the i-th section and r;(n) is an auxiliary
variable chosen to be orthonormal to F;(n), so that @, will be orthogonal,

ie. Q.Q =1.

e Also, with only one orthogonal matrix @,

() =@ (i)

0 - (A b)

where

F(n) =[Fi(n), Fy(n),.... Fy(n)]* (93)

and r(n) is an auxiliary variable chosen to be orthonormal to the Fi(n),

i=1,..,N.

The matrix @, can be constructed in a recursive way from the matrices
Q);, starting from @ up to Q. This construction is based in the following
lemma.

Lemma The matrix @, obtained from the previous arrangement is
orthogonal.
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Then, the structural interpretation of the SM will be useful also in this
case.
Consider the a priori error is e(n) = d(n) — y(n), where

Q) | 0wt [ T |
where. @, = [q1 (n) g5 (n) -+ g (n)]"
Also,
2 = f00-.-1Q-" ()
i) = 0.1, () (94)
The coefficient update is given by
O(n+1) = 6(n)—2pue(n)V(n) (95)
where 8(n)=[vi(n),...ux(n),a1(n),....an(m)]T, V(0)=[V0, .V Vg s Vay "
de(n) de(n)
V, = =—Fi(z)x(n Vau =
" 0vi(n) (2)(n) ' 0Oai(n)
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To obtain the gradient with respect to a; is necessary to consider

u(n

— Isql )
Van) = [ahol ()
where ¢; = 6%2" Since ), can be expressed as
Mbigiy(n)

/\N—léN—lq%(n)
qn(n)

where \; = (—1)1'1_[v 21_?:2

dients with respect to the a; coefficients can be written as

( vals(n) ) _ ( 61qu¥(”))) (Zf%)) (96)

vClN—1(n) 6N—1q%(n

, then using (94) and the previous equation the gra-

this implies that

Alv?l(n)
/\N_lv:aN_l(n) =Q, (Z((:Z))) - (U(g(;)l))
d(n)

From this equation we can conclude that the gradient of the a priori error
with respect to each denominator coefficient is given by

B de(n)
8ak

= /\kuk(n — 1)
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x(n) > z‘l—al ” z_l—az , 2_1—03
l—ayz—1 l1—agz—1 l—agz—1
o1 6] a3 4
l—ayz—1 l1—agz—1 l1—azz—1 1—agz—1
tVau(n) o AVu(n) V) 2 VL)
4| 1) V3 V4
) ) o2
H(:) (e
” z_l—al ” z_l—az ” z_l—ag
l—ayz—1 l1—agz—1 l—agz—1
o1 6] a3 4
l—ayz—1 l1—agz—1 1—azz—1 l1—agz—1

! ! !

|
A ? Ao ? Ay ? M ?
Vi, (1) Vi, (n) V(1) Vi, (n)

Figure 57: SM orthonormal realization with first-order sections
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8.5 Some examples
Example 1:

05 —0.4¢71
n) = e et
1 — 1.1314¢~! + 0.25¢2

This is an example of global convergence of the SM method, that gives
estimates that approximate closely the global minima obtained by the OE
method.

Shl on line ODE trajectories
2 T T
s e B ‘ .
06p------ R e
04f------ R M 2 R
02fsercpenmrde et 8]
Ry IS
1 S E_E L :
02p------ :""/'1' riiy
LS ;
04p------ TEEEEE. e
4
DO
S
-1 | : : a1
-2 -1.5 -1 -0.5

Figure 58: ODE trajectories of the SM method with sufficient order.
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S ODE trajectories
&

ST TTT TS T T T T

]
e i

0.5

bo

Figure 59: ODE trajectories of the SM method with N =1, M =0
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Example 2:

0.05 — 0.4 ¢! o(n)
(1—0.8303 ¢ 1)(1+0.83¢°1)

d(n) =

This example shows that multiple solutions can exist for the SM method
in insufficient order cases.

Figure 60: ODE trajectories of the SM method with N =1, M =0
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With the purpose of study the global behavior of the SM method for in-
sufficient order cases, some stationary points comparisons were performed in
the following examples (with an IIR adaptive filter of orders N =1, M = 0,
i.e., when the stability can be guaranteed).

Example 3:

dn) = 0.05 — 0.4¢7!
C(1-0.8303¢71)(1 — pag )

for —1.0 > py > 1.0.
For py, = 0.3011 or ps = 0.83, this example corresponds to examples 1 and

x(n)

05 06 -04 02 0 02 04 06 08

Figure 61: Stationary points for the SM and OFE methods. X MSOE global minima, e
MSOE local minima, o degenerated point, 4+ stationary point of the SM method.
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ODE of different realizations

Shl lattice ODE trajectories

sufficient order), example 2.

(

Figure 62: ODE of the Lattice SM algorithm
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Figure 63: ODE of the Orthonormal SM algorithm (sufficient order), example 2.



