
Semantic Importance Dual-Priority Server: Properties
David R. Donari

Universidad Nacional del Sur - CONICET, Dpto. de Ing. Eléctrica y Computadoras,
Bahía Blanca, Argentina, 8000

ddonari@uns.edu.ar

and

Martin L. Duval
Universidad Nacional del Sur, Dpto. de Ing. Eléctrica y Computadoras,

Bahía Blanca, Argentina, 8000
mduval@uns.edu.ar

and

Leo D. Ordinez
Universidad Nacional del Sur - CONICET, Dpto. de Ing. Eléctrica y Computadoras,

Bahía Blanca, Argentina, 8000
lordinez@uns.edu.ar

and

Diana G. Sanchez
Universidad Nacional del Sur, Dpto. de Ing. Eléctrica y Computadoras,

Bahía Blanca, Argentina, 8000
sanchezd@criba.edu.ar

1 System Model
Most of the real-time tasks that interact with the environment through sensors are assumed to receive a
value from those sensors and produce a result based on them. With the objective of taking account of this
semantic aspect of a task, a parameter µ, named the threshold, is introduced. The µ threshold is established
by the system developer at design time. So, it is based on the expected values of that result. If the result
obtained exceeds the threshold, the task associated to that sensor is said to be IMPORTANT and it is
associated, at least for one instance, to the set of IMPORTANT tasks. On the contrary, when the result
is below that threshold the task is NOT IMPORTANT and, analogously to the previous case, it will belong
to the NOT IMPORTANT set. It is worth mentioning, that the classi�cation of a task is done once an
execution is completed. In a formal way:

Ji,j ∈
{

IMPORTANT if δi,j−1 ≥ µi

NOT IMPORTANT if δi,j−1 < µi

where δi,j is a magnitude whose domain establishes an order relationship and it is based on the results
produced by the task.

As this tasks are soft, their temporal characterization is not exact and is usually described by probability
functions. In this sense, a task τi is composed by a series of jobs, being Ji,j the j-Th job of task i, which
arrives at a rate Ti, where this value is the minimum interarrival time. At the same time, each task is also
characterized by a worst case execution time Ci. The time at which a job arrives to the system is known as



the activation time ai,j and the deadline of that job is obtained as follows: di,j = ai,j + Ti. In addition to
temporal features, the new introduced µi parameter is had.

A server is a software abstraction where, in a general case, several tasks are encapsulated. This is also
known as the isolation property. Each server has a portion of the actual processor available bandwidth, so
if a task tries to use more bandwidth than the one of its associated server, then the server is delayed and
consequently the task is also delayed. As a consequence, by using a resource reservation mechanism based
on servers, the schedulability analysis problem of the entire system is reduced to the one of estimating the
schedulability of each server alone.

In a temporal characterization a server s has a budget Qs, which is the maximum time available for
execution of its tasks; an actual available budget cs; a period Ps; a deadline ds and a postponement factor
αs, which is used to impose a delay on the NOT IMPORTANT tasks.

2 The Algorithm
In this section, the algorithm SIDS will be formally presented, along with a series of properties that will
be stated and proved. The main idea behind the algorithm is to postpone the execution of not important
tasks, so that portion of the bandwidth can be used by other important tasks that belong to the same or to
another server.

2.1 De�nition and Functioning
In a simpli�ed but general case, a SIDS is used to encapsulate a task whose available portion of the processor
is bounded to the bandwidth of its SIDS. In the same line of reasoning, a system is composed by a certain
number of SIDS, whose access to the processor is given by a higher level scheduling policy. If the chosen policy
is Earliest Deadline First (EDF) [1], the SIDS with the closer deadline to the actual time is the one with the
highest priority. At this point is where the newly introduced postponement factor plays a fundamental role.
The fact of postponing the deadline of a SIDS with only a NOT IMPORTANT task makes it lose priority
among the others.

On the other side, the imposition of a hard reservation makes that dynamic bandwidth distribution
among the servers even more fair. In the case of SIDS, the hard reservation is introduced by means of
di�erential waiting for replenishment of the SIDS' budget. With this in mind, a SIDS can be in one of four
states at each moment of time:

Active: There is at least one job ready to be executed and cs > 0.

Idle: There are no pending jobs to be executed.

Short_Wait: The execution budget was exhausted and there is at least one IMPORTANT job waiting to
complete its execution.

Long_Wait: Identical to the previous case, but there are no IMPORTANT pending jobs and there is at
least one NOT IMPORTANT job waiting to execute.

In Figure 1(a) the di�erent possible transitions between states is shown.
As was mentioned before, SIDS proposes a hierarchical scheduling architecture. In this sense, there are

two levels of queues: �rst, the system queues; and second, the ones internal to a SIDS. Having this in mind
and from the previous state model, in Figure 1(b) the di�erent queues necessary in each part of the system
are shown.

SIDS is based on a simple set of rules, which are described following this convention: AI is for Active
Important; AN is for Active Not Important; WS is for Wait Short; WL is for Wait Long; SL is for Stop
Long Wait; IIN is for Inactive Important/Not Important and DB is for Decrement Budget. In this sense,
the rules are also numbered to distinguish the situation in which they are applied; for example, in the case
of rule AI, there are three di�erent moments in which it is applied keeping in all cases the same spirit. With
this in mind, the rules previously described can be thought like a family of rules, where, despite the situation,
each instance of the family performs the same task each time.

AI: SIDS has enough budget to execute jobs and there are IMPORTANT pending ones. A transition to
ACTIVE state is performed.

2



LONG_WAIT

SHORT_WAIT

ACTIVE

AI or ANAI

ANLW

SW

SL

SW

LW

IIN

IDLE

(a) State model of SIDS.

Ready

Short_Wait

Long_Wait

Inactive

SYSTEM

Important

Not_Important

SIDS

(b) Di�erent levels of queues in the SIDS ap-
proach.

Figure 1: Logical aspects of SIDS.

AN: SIDS has enough budget to execute jobs and there are NOT IMPORTANT pending ones. A transition
to ACTIVE state is performed.

SW: When the SIDS' budget is exhausted and there are IMPORTANT pending jobs it waits for at most
one period for its replenishment. A transition to WAIT_SHORT state is performed.

LW: When the SIDS' budget is exhausted and there are NOT IMPORTANT pending jobs it waits for a
multiple αs of its period for replenishment. A transition to WAIT_LONG state is performed.

SL: If a SIDS is in WAIT_LONG state and an IMPORTANT job arrives, it cuts down the waiting to,
at most, one period from the activation time of that job. A transition to WAIT_SHORT state is
performed.

DB: When a SIDS executes a job for one time unit, it decrements it budget accordingly.

IIN: When a job �nishes and there are not pending ones, the SIDS goes to IDLE state.

With all, a more formal scheme than the rules previously shown is presented in Algorithm 1. Auxiliary
functions used in the algorithm are grouped in Table 1.

update_SIDS_IMPORTANT(){ update_SIDS_NOT_IMPORTANT(){
cs ← Qs cs ← Qs
dk ← ak + Ps dk ← ak + αPs
k← k + 1} k← k + 1}

postpone_IMPORTANT(){ postpone_NOT_IMPORTANT(){
rs ← dk + Ps} rs ← dk + αPs}

Table 1: Auxiliar functions used in Algorithm 1

2.2 Properties
In general, the execution time demanded by a task τi in the interval [t1, t2] is given by:

Di(t1, t2) =
∑

(t1≤ai,j)∧(t2≥di,j)

Ci,j (2.1)

where ai,j , di,j and Ci,j are the activation time, the deadline and the worst case execution time of the j-Th
job of τi, respectively.

From equation 2.1 and the de�nition of SIDS, three possible relations are deduced between the intervals
[t1, t2] and [ak, dk]:

3



Algorithm 1 Algorithm SIDS
When a job Jj arrives in t = ak and the SIDS is IDLE do

Enqueue it
if Jj ∈ IMPORTANTS then

if t ≥ dk − cs
Ps
Qs

then {Become ACTIVE}
update_SIDS_IMPORTANT() −→ Rule AI.1

else if (dk ≥ t) and (cs = 0) then {Go to WAIT_SHORT}
postpone_IMPORTANT() −→ Rule SW.1

else {Become ACTIVE}
The job is served with the current budget and deadline −→ Rule AI.2

end if
else

if t ≥ dk − csα Ps
Qs

then {Become ACTIVE}
update_SIDS_NOT_IMPORTANT() −→ Rule AN.1

else if (dk ≥ t) and (cs = 0) then {Go to LONG_WAIT}
postpone_NOT_IMPORTANT() −→ Rule LW.1

else {Become ACTIVE}
The job is served with the current budget and deadline −→ Rule AN.2

end if
end if

end When
When a job Jj arrives in t and the SIDS is either ACTIVE or in WAIT_SHORT do

Enqueue it
end When
When a job Jj arrives in t = ak and the SIDS is in WAIT_LONG do

Enqueue it
if Jj ∈ IMPORTANTS then {Go to SHORT_WAIT}

rs ← min{ak + Ps, rs} −→ Rule SL
end if

end When
When a job Jj served by SIDS Ss executes for 1 unit of time do

cs ← cs − 1 −→ Rule DB
end When
When SIDS Ss is executing Jj and cs = 0 do

if Jj ∈ IMPORTANTES then {Go to SHORT_WAIT}
postpone_IMPORTANT() −→ Rule SW.2

else {Go to LONG_WAIT}
postpone_NOT_IMPORTANT() −→ Rule LW.2

end if
end When
When (there are IMPORTANT pending jobs) and (t ≥ rs) do {Become ACTIVE}

ak ← t −→ Rule AI.3
update_SIDS_IMPORTANT()

end When
When (there are NOT IMPORTANT pending jobs) and (t ≥ rs) do {Become ACTIVE}

ak ← t −→ Rule AN.3
update_SIDS_NOT_IMPORTANT()

end When
When a job Jj finishes do

if (There is at least one pending job) and (there is enough budget) then {Remain ACTIVE}
Depending on the kind of pending jobs −→ Rule AI.2 or Rule AN.2

else {Go IDLE}
−→ Rule IIN

end if
end When

(1) t2 − t1 < dk − ak

(2) t2 − t1 = dk − ak

(3) t2 − t1 > dk − ak

According to the de�nition of SIDS and due to the hard reservation condition, it can be stated that
there can be just one interval [ak, dk] for each period Ps of the server. Then, from the relations between the
interval [ak, dk] and the period Ps and between the intervals [t1, t2] and [ak, dk], case (1) can not be given
and from (2) and (3) come out the following de�nition for a SIDS s.

De�nition 2.1 (Maximum demand bound function). The maximum demand bound function of a SIDS
with only IMPORTANT tasks is given by:

DsMAX (t1, t2) = (
⌊

t2
Ps

⌋
−

⌊
t1
Ps

⌋
)Qs (2.2)

Based on the distinction done by the algorithm between IMPORTANT and NOT IMPORTANT tasks,
analogously to the previous de�nition, the following is obtained.

4



De�nition 2.2 (Minimum demand bound function). The minimum demand bound function of a SIDS with
only NOT IMPORTANT tasks is given by:

DsMIN
(t1, t2) =

⌊
t2 − t1
αsPs

⌋
Qs (2.3)

Theorem 2.1 (Isolation Theorem). A SIDS with parameters (Qs, Ps, αs) uses a bandwidth Us of, at least,
Qs

αPs
and, at most, Qs

Ps

Proof. The execution of a SIDS can be thought as composed by a number of execution chunks, namely k in
an increasing order, being ek the execution time demanded by chunk k. With this in mind, Equation 2.1
would be:

∀t1, t2 ∃k1, k2 : Ds(t1, t2) =
∑

k:ak≥t1∧dk≤t2

ek =
k2∑

k=k1

ek

Being fk the time at which a SIDS �nishes the execution of chunk k and cs its actual budget, it follows:

cs(fk) = cs(ak)− ek

and
cs(ak+1) =

{
cs(fk) if dk+1 was generated by rules AI.2 or AN.2
Qs if dk+1 was generated by rules AI.1 or AI.3 or AN.1 or AN.3

So, the demonstration consists on showing that

(dk2 − ak1)
Qs

αPs
≤ Ds(ak1 , dk2) + cs(fk2) ≤ (dk2 − ak1)

Qs

Ps

by application of the algorithm and induction over k2 − k1, this is, the amount of chunks generated.
Base case: In the interval [t1, t2] there is only one active chunk, so k1 = k2 = k. The following cases

can be given:

1. dk < ak + Ps

2. dk = ak + Ps

3. dk = ak + αPs

1) dk < ak + Ps

If dk < ak + Ps then dk was generated by rules AI.2 or AN.2. Both cases are the same because this is
the situation in which the SIDS is idle and a job arrives, but it is served with the budget remaining of the
las execution of the SIDS.

ak +
cs(ak)

Qs
Ps < dk

as cs(fk) = cs(ak)− ek = cs(ak)−Ds(ak, dk) then

ak +
Ds(ak, dk) + cs(fk)

Qs
Ps < dk

reordering
Ds(ak, dk) + cs(fk) < (dk − ak)

Qs

Ps
(2.4)

2) dk = ak + Ps

If dk = ak + Ps then dk was generated by rules AI.1 or AI.3 then

cs(fk) + Ds(ak, dk) = cs(ak) = Qs

and we have
cs(fk) = cs(ak)− ek = cs(ak)−Ds(ak, dk)

5



reordering the equation of rule AI.1
dk ≤ ak + cs(ak)

Ps

Qs

dk ≤ ak + cs(fk) + Ds(ak, dk)
Ps

Qs

reordering again
(dk − ak)

Qs

Ps
≤ cs(fk) + Ds(ak, dk) = Qs

in general
(dk − ak)

Qs

Ps
≤ cs(fk) + Ds(ak, dk) (2.5)

3) dk = ak + αPs

If dk = ak + αPs then dk was generated by rules AN.1 or AN.3 then

cs(fk) + Ds(ak, dk) = cs(ak) = Qs

and we have
cs(fk) = cs(ak)− ek = cs(ak)−Ds(ak, dk)

reordering the equation of rule AN.1
dk ≤ ak + cs(ak)

αPs

Qs

dk ≤ ak + cs(fk) + Ds(ak, dk)
αPs

Qs

reordering again
(dk − ak)

Qs

αPs
≤ cs(fk) + Ds(ak, dk) = Qs

in general
(dk − ak)

Qs

αPs
≤ cs(fk) + Ds(ak, dk) (2.6)

From equations 2.4, 2.5 and 2.6 we have that for an only one active chunk in the system:

(dk − ak)
Qs

αPs
≤ cs(fk) + Ds(ak, dk) ≤ (dk − ak)

Qs

Ps
(2.7)

Inductive step:

(dk2−1 − ak1)
Qs

αPs
≤ Ds(ak1 , dk2−1) + cs(fk2−1) ≤ (dk2−1 − ak1)

Qs

Ps
(2.8)

Given the possible relations between dk and dk−1 the following cases are to be considered:

1. dk ≥ dk−1 + Ps, with ak ≥ dk−1. The possible rules applied are: 1) AI.1 2) LW.1 or LW.2, SL and
AI.3.

2. dk = dk−1, with ak < dk−1. The possible rules applied are: 1) AI.2 2) AN.2 3) AIN.

3. dk = dk−1 + Ps, with ak ≤ dk−1. The possible rules applied are: SW.1 or SW.2 and AI.3.

4. dk ≥ dk−1 + αPs, with ak ≥ dk−1. The possible rules applied are: AN.1.

5. dk ≥ dk−1 + αPs, with ak ≤ dk−1. The possible rules applied are: LW.1 or LW.2 and AN.3.

6



1) dk−1 + Ps ≤ dk < dk−1 + αPs

The only part of the inductive hypothesis that is a�ected by the rules applied is:

Ds(ak1 , dk2−1) + cs(fk2−1) ≤ (dk2−1 − ak1)
Qs

Ps

then the previous expression can be expressed as
k2−1∑

k=k1

ek + cs(fk2−1) ≤ (dk2−1 − ak1)
Qs

Ps

adding ek2 to both sides
k2−1∑

k=k1

ek + ek2 ≤ (dk2−1 − ak1)
Qs

Ps
− cs(fk2−1) + ek2

k2∑

k=k1

ek ≤ (dk2−1 − ak1)
Qs

Ps
− cs(fk2−1) + ek2

taking that cs(fk) = cs(ak)− ek

k2∑

k=k1

ek ≤ (dk2−1 − ak1)
Qs

Ps
− cs(fk2−1) + cs(ak2)− cs(fk2)

applying Rule AI.1 or AI.3 we have that cs(ak2) = Qs

k2∑

k=k1

ek + cs(fk2) ≤ (dk2−1 − ak1)
Qs

Ps
+ Qs − cs(fk2−1)

and
k2∑

k=k1

ek + cs(fk2) ≤ (dk2−1 − ak1)
Qs

Ps
+ Qs − cs(fk2−1) ≤ (dk2−1 − ak1)

Qs

Ps
+ Qs

discarding the term in the middle and reordering we get
k2∑

k=k1

ek + cs(fk2) ≤ (dk2−1 + Ps − ak1)
Qs

Ps

knowing that dk2 ≥ dk2−1 + Ps we �nally get

Ds(ak1 , dk2) + cs(fk2) ≤ (dk2 − ak1)
Qs

Ps
(2.9)

2) dk = dk−1

We start with the upper half of the inductive hypothesis.

Ds(ak1 , dk2−1) + cs(fk2−1) ≤ (dk2−1 − ak1)
Qs

Ps

adding ek2 to both sides
k2−1∑

k=k1

ek + ek2 ≤ (dk2−1 − ak1)
Qs

Ps
− cs(fk2−1) + ek2

being dk2−1 = dk2 we have
k2∑

k=k1

ek ≤ (dk2 − ak1)
Qs

Ps
− cs(fk2−1) + ek2

7



considering cs(fk) = cs(ak)− ek and cs(fk2−1) = cs(ak2) because of rules AI.2 or AIN

k2∑

k=k1

ek ≤ (dk2 − ak1)
Qs

Ps
− cs(ak2) + cs(ak2)− cs(fk2)

and �nally
Ds(ak1 , dk2) + cs(fk2) ≤ (dk2 − ak1)

Qs

Ps
(2.10)

To the lower half of the proof we proceed in the same fashion

(dk2−1 − ak1)
Qs

αPs
≤ Ds(ak1 , dk2−1) + cs(fk2−1)

adding ek2 to both sides

(dk2−1 − ak1)
Qs

αPs
− cs(fk2−1) + ek2 ≤

k2−1∑

k=k1

ek + ek2

being dk2−1 = dk2 we have

(dk2 − ak1)
Qs

αPs
− cs(fk2−1) + ek2 ≤

k2∑

k=k1

ek

considering cs(fk) = cs(ak)− ek and cs(fk2−1) = cs(ak2) because of rules AN.2 or AIN

(dk2 − ak1)
Qs

αPs
− cs(ak2) + cs(ak2)− cs(fk2) ≤

k2∑

k=k1

ek

and �nally
(dk2 − ak1)

Qs

αPs
≤ Ds(ak1 , dk2) + cs(fk2) (2.11)

3) dk = dk−1 + Ps

This case is similar to 1), in fact it can be seen as a special case of that one. The only part of the
inductive hypothesis that is a�ected by the rules applied is:

Ds(ak1 , dk2−1) + cs(fk2−1) ≤ (dk2−1 − ak1)
Qs

Ps

adding ek2 to both sides

k2−1∑

k=k1

ek + ek2 ≤ (dk2−1 − ak1)
Qs

Ps
− cs(fk2−1) + ek2

k2∑

k=k1

ek ≤ (dk2−1 − ak1)
Qs

Ps
− cs(fk2−1) + ek2

taking that cs(fk) = cs(ak)− ek

k2∑

k=k1

ek ≤ (dk2−1 − ak1)
Qs

Ps
− cs(fk2−1) + cs(ak2)− cs(fk2)

applying Rule AI.3 we have that cs(ak2) = Qs

k2∑

k=k1

ek + cs(fk2) ≤ (dk2−1 − ak1)
Qs

Ps
+ Qs − cs(fk2−1)

8



and
k2∑

k=k1

ek + cs(fk2) ≤ (dk2−1 − ak1)
Qs

Ps
+ Qs − cs(fk2−1) ≤ (dk2−1 − ak1)

Qs

Ps
+ Qs

discarding the term in the middle and reordering we get

k2∑

k=k1

ek + cs(fk2) ≤ (dk2−1 + Ps − ak1)
Qs

Ps

knowing that dk2 = dk2−1 + Ps we �nally get

Ds(ak1 , dk2) + cs(fk2) ≤ (dk2 − ak1)
Qs

Ps
(2.12)

4) dk ≥ dk−1 + αPs

The only part of the inductive hypothesis a�ected by the rules applied is the lower one.

(dk2−1 − ak1)
Qs

αPs
≤ Ds(ak1 , dk2−1) + cs(fk2−1)

adding ek2 to both sides

(dk2−1 − ak1)
Qs

αPs
+ ek2 ≤

k2−1∑

k=k1

ek + ek2 + cs(fk2−1)

being ek = cs(ak)− cs(fk)

(dk2−1 − ak1)
Qs

αPs
+ cs(ak2)− cs(fk2)− cs(fk2−1) ≤

k2∑

k=k1

ek

by rule AN.1 cs(ak2) = Qs

(dk2−1 − ak1)
Qs

αPs
+ Qs − cs(fk2−1) ≤

k2∑

k=k1

ek + cs(fk2)

Qs

αPs
(dk2−1 + αPs − ak1)− cs(fk2−1) ≤

k2∑

k=k1

ek + cs(fk2)

like dk ≥ dk−1 + αPs

Qs

αPs
(dk2 − ak1)− cs(fk2−1) ≤

k2∑

k=k1

ek + cs(fk2)

Qs

αPs
(dk2 − ak1) ≤

k2∑

k=k1

ek + cs(fk2) + cs(fk2−1)

being cs(ak2 = Qs ≥ cs(fk2−1)) we get

Qs

αPs
(dk2 − ak1) ≤

k2∑

k=k1

ek + cs(fk2) + cs(fk2−1) ≤
k2∑

k=k1

ek + cs(fk2) + cs(ak2)

then
Qs

αPs
(dk2 − ak1) ≤

k2∑

k=k1

ek + cs(fk2) + cs(ak2)

9



reordering we get
Qs

αPs
(dk2 − ak1)−Qs ≤

k2∑

k=k1

ek + cs(fk2)

This last inequation means that the processor's demand plus the budget at the end of the execution of the
last chunk is great or equal than the budget required between the activation of the �rst chunk and the
�nishing of the last one minus a full replenishment (Qs). This situation, however uncommon in practice can
harm the execution of the last chunk.

⌊
(dk2 − ak1)

αPs

⌋
Qs ≤ Ds(ak1 , dk2) + cs(fk2) (2.13)

5) dk ≥ dk−1 + αPs

The proof is analogous to case 4), the rules applied change but they are complementary in execution.
For instance, a possible execution sequence of the rules could be: AN.1 , LW.2 and AN.3.

Then, by inequations 2.9, 2.10, 2.11, 2.12 and 2.13 can be stated that

(dk2 − ak1)
Qs

αPs
≤ Ds(ak1 , dk2) + cs(fk2) ≤ (dk2 − ak1)

Qs

Ps
(2.14)

Theorem 2.2 (Schedulability Property). Given a set of tasks with total utilization factor UT and a set of
SIDS servers with total utilization factor USIDS (considering only the upper bound limit), then the whole set
is schedulable by Earliest Deadline First (EDF) if and only if

UT + USIDS ≤ 1

Proof. The proof follows directly from the isolation theorem.

Theorem 2.3 (Hard Schedulability Property). Given a hard important real-time task τi with parameters
Ci, di and Ti, then it is schedulable by a SIDS with parameters Qs and Ps, such that Ci ≤ Qs and Ti = Ps,
if and only if it is schedulable by EDF.

Proof. Since task τi is hard, the di�erence between its job's activations is given by its period (or minimum
interarrival time), which is equal to the period of the SIDS. In particular, ak+1−ak ≥ Ps considering jitter or
the case that the task is aperiodic. As a consequence of this and because τi ∈ IMPORTANTS, the deadline
generated by the SIDS algorithm is dk = ak + Ps; which is, in fact, the same deadline of the task (according
to [1]). Besides, the restriction of Ci ≤ Qs gives the server enough budget to complete the execution of
every job without postponing its deadline. Moreover, the SIDS will never go to a wait state because each
time a job arrives is served by rule AI.1. This can be easily proved arguing that Ps ≥ Qs and considering
dk = ak + Ps.

Property 2.1 (Compatibility Property). In the absense of NOT IMPORTANT tasks the algorithm behaves
like IRIS-HR.

Proof. If there are only IMPORTANT tasks, the rules that can actually be applied are: AI.1 SW.1, AI.2,
DB, SW.2, AI.3 (related to important jobs) and IIN, which correspond directly to 1.i, 1.ii, 1.iii, 2, 3, 4 and
5 from the IRIS-HR presented in [2].

Property 2.2 (Maximum Deadline Value). The highest value that can be assigned to a SIDS deadline is
given by:

dMAX = ds−1 + 2αPs

Proof. This property follows directly from the application of rules related to NOT IMPORTANT tasks and
without any interruption due to IMPORTANT ones. Particularly, there are two possible combinations of
rules:

1. Rules: AN.1, LW.2 and AN.3.

10



2. Rules: LW.1 and AN.3.

In both cases, there is a long wait involved, which takes up to αPs units of time from the deadline; and
then a deadline postponement of the same amount. Hence, the new deadline is 2αPs units of time from the
previous one.

References
[1] Liu, C. L., and Layland, J. W. Scheduling algorithms for multiprogramming in a hard-real-time

environment. Journal of the ACM 20, 1 (1973), 46�61.

[2] Marzario, L., Lipari, G., Balbastre, P., and Crespo, A. Iris: A new reclaiming algorithm for
server-based real-time systems. In Proceedings of the 10th IEEE RTAS (Toronto, Canada, 2004), IEEE
Computer Society.

11


