
Guaranteed On-Line Weakly-Hard Real-Time Systems

Guillem Bernat
University of York

Real-Time System Research Group
York - England

bernat@cs.york.ac.uk

Ricardo Cayssials
Universidad Nacional del Sur

Department of Electrical Engineering
Bahı́a Blanca - Argentina

iecayss@criba.edu.ar

Abstract

A weakly hard real-time system is a system that can tol-
erate some degree of missed deadlines provided that this
number is bounded and guaranteed off-line. In this pa-
per we present an on-line scheduling framework called Bi-
Modal Scheduler (BMS) for weakly-hard real-time systems.
It is characterised by two modes of operation. In normal
modetasks can be scheduled with a generic scheduler (pos-
sibly best-effort). Weakly hard constraints are guaranteed
to be satisfied by switching, whenever necessary, to a panic
modefor which schedulability tests exist that guarantee that
deadlines are met. Due to the sources of pessimism in the
analysis (mainly WCET and critical instant assumptions)
the worst case situations may never arise, thus almost all
the time all deadlines are met, only at peak loads some
deadlines may be missed, however the behaviour of the sys-
tem is predicable and bounded. This allows building sys-
tems which maximise resource usage during normal opera-
tion and that resort to a guaranteed and predictable perfor-
mance degradation specified by the weakly hard constraints
should a transient overload arise.

1. Introduction

Traditionally, real-time systems (or tasks) are classified
as beinghard, soft or firm. For hard real-time tasks, it is
imperative that no deadline is missed, while for soft tasks,
it is acceptable to miss some of the deadlines occasionally.
It is still valuable for the system to finish the task, even if
it is late, or just not finish that particular invocation. Firm
tasks are also allowed to miss some of their deadlines, but
as opposed to soft tasks there is no associated value if they
finish after the deadline.

In practical engineering contexts, the occasional loss of
some deadline can be usually tolerated (even in most hard
real-time systems). This is either because the consequences
of the loss can be negligible (due to the fact that the robust-

ness of the involved algorithms imply the ability to react
properly at the next invocation step without serious conse-
quences), or because the effect of a single missed deadline
is not noticeable by a user (as it would be the case of a
missed audio packet in a video conferencing system). In
this case the quality of the service (QoS) provided would be
lower. Nevertheless, the termoccasional is so ambiguous
that it has no practical meaning for a specification. The ex-
tent to which a system may tolerate missed deadlines has to
be stated precisely. In fact most real-time systems that are
classified as hard are not that hard. Some level of missed
deadlines could be tolerated but the ambiguity of the def-
inition of soft and firm is so inadequate that the system is
considered to have to meet all deadlines when it really does
not require so. A typical example is a control algorithm,
its design allows for deadlines to be missed occasionally,
however the system may become unstable if more than�

deadlines are missed in a row.
Assuming that some deadlines can be missed, the way

that these missed and met deadlines are distributed is impor-
tant. Some systems, for instance, are very sensitive to the
consecutiveness of the missed deadlines. A missed deadline
in a computer controlled system may correspond to a gap in
the output signal, and if these gaps occur consecutively, the
quality of the output is lower than if those gaps are non-
consecutive. To address the issues of real-time systems that
can miss deadlines we introduce the concept of weakly-hard
real-time system [3]:

Definition 1 (Weakly-hard) A weakly-hard real-time sys-
tem is a system in which the distribution of its met and
missed deadlines during a window of time � is precisely
bounded.

We use the notion of weakly-hard real-time system to
represent an appropriate conceptual framework for specify-
ing real-time systems that can tolerate occasional losses of
deadlines. Systems (tasks) that must meet all of their dead-
lines are a particular case of our definition and will be re-

ferred to asstrongly hard real-time systems(tasks) whenever
the distinction is relevant.

One feature that characterises real-time systems is that
they are dimensioned for the worst case. This worst case
scenario is very pessimistic and the load during this instant
is generally much higher than the average load during the
normal operation of the system. By specifying weakly hard
constraints we can effectively lower down the resource de-
mand during peak loads, therefore being able to schedule a
system that otherwise would be deemed unschedulable.

There are three sources of pessimism in the analysis: (1)
tasks do not always run for the worst case due to not follow-
ing the worst path and due to the pessimism of the WCET
analysis itself, (2) tasks do not rearrive always with their
minimum interarrival time and (3) they do not suffer ev-
ery time the worst case blocking factor. As a result, systems
with weakly hard constraints, although the analysis assumes
that they may miss some deadlines, at run-time, almost all
of them deadlines actually are met. In fact, during the nor-
mal operation of the system, the current load is much lower
than the worst case scenario.

There are two research problems of interest related to
real-time systems that can miss some of its deadlines:

� How to specify temporal constraints for weakly hard
real-time systems

� How to schedule systems with weakly-hard con-
straints.

The specification of temporal constraints is generally
done, for example, with a constraint

�
�
�

�
meaning that a

task has to meet at least� deadlines in any� consecutive
invocations (other types of constraints are defined in section
2). If this constraint is not satisfied (e.g. more than� invo-
cations miss its deadline in a window of� invocations), it
is said that adynamic failure occurs.

The scheduling approaches are concerned on how to use
the weakly hard constraints to better schedule the system.
The classification of current scheduling approaches can be
done according to:

� Guaranteed/Best-effort: In a guaranteed framework,
schedulability tests exist that guarantee that no dy-
namic failure can occur. Non-guaranteed schedulers
use best-effort techniques to minimise the probability
of a dynamic failure.

� Off-line/On-line schedules: An off-line approach fol-
lows a pre-built sequence of which tasks to skip. On
the other hand, in on-line approaches the decision on
what invocation is chosen to be executed is made at
runtime, usually based on the recent history of the sys-
tem.

� Complexity: In evaluating the suitability of a par-
ticular approach, the complexity of determining such
approach has to be also considered. On on-line ap-
proaches, computationally expensive acceptance tests
or priority calculations are clearly not adequate. On
the contrary, off-line approaches may have a very low
complexity, but they are not suitable when scheduling
decision have to be taken at runtime.

� Process models: Weakly hard constraints apply to pe-
riodic (or pseudo-periodic) tasks only. However, real-
time systems may be made up of other types of tasks.
Some approaches are restrictive as they may only ap-
ply to task sets with restricted or uniform process mod-
els (all tasks are similar, same window size,�� � ��,
only periodic tasks, etc). The general applicability of
scheduling approach is its integration and coexistence
with other scheduling approaches and process models.

The original contribution of this paper is a framework for
scheduling real-time systems that has the following proper-
ties: Guaranteed: there exists off-line worst-case schedula-
bility tests that guarantee that weakly-hard constraints are
always satisfied (no dynamic failure can occur); On-line:
scheduling decisions are taken at runtime, when the task is
released and only once per task invocation; Low complex-
ity: implementation of decision tests can be done with very
few machine instructions; Heterogeneous process model:
weakly hard tasks can coexist with other types of tasks
(hard, sporadic, aperiodic servers etc.) as schedulability
tests exist that allow to model the worst case interference
that they produce on each other. The approach presented
here also allows any type of weakly hard constraint with ar-
bitrary parameters. No restriction on tasks having the same
size, or same weakly hard constraints is imposed.

The scheduling framework is based on a two mode
scheduler, namedBi-Modal scheduler (BMS) . Innormal
mode tasks are scheduled according to a flexible (generic)
scheduling policy that may take into account past history
of missed and met deadlines, computation times, value and
deadlines. However, in order to prevent a dynamic failure
the scheduler can switch topanic mode for which schedula-
bility tests exist that guarantee that a task scheduled in this
mode will meet its deadline. By changing task instances
to panic mode adequately, dynamic failures are prevented.
When there is no danger of a dynamic failure the scheduler
switches back to normal mode. This change of operation
can be done very efficiently and with very low overhead
thus effectively providing a guaranteed minimum perfor-
mance.

In the rest of this section we review the related work and
in section 2 we formally introduce the concept of weakly-
hard real-time system. After that, in section 3 we present
our process model. We later introduce the concept of�-

pattern in section 4 to describe the history of missed and met
deadlines. In section 5 we present the scheduling frame-
work and in section 6 the schedulability analysis in panic
mode. Finally in section 7 we present the evaluation of the
approach through simulation. We present our main conclu-
sions in section 8.

1.1. Related work

In [8] the concept of��� ��-firm deadlines was intro-
duced to model tasks that have to meet� deadlines every�
consecutive invocations in the context of a stream of packets
of communication networks. Later the same authors devel-
oped an analytic model for evaluating the expected proba-
bility of dynamic failure for an incoming stream given the
other streams present in the system [9]. The��� ��-firm
deadlines approach is a best-effort on-line scheduling algo-
rithm, the priority of a task is raised if it is close to not
meeting� deadlines on the last� invocations. Similar ap-
proaches like [8], [14], [16] have also been proposed. They
are characterised by providing best-effort scheduling algo-
rithms. It is therefore possible that dynamic failures occur.

Some guaranteed approaches of��� ��-firm systems
were considered in [12] and [15]. In [12] a guaranteed ap-
proach is presented based on an off-line scheduler of peri-
odic tasks. Its main limitation is that it builds an off-line
schedule and therefore it is only applicable to task sets for
purely periodic tasks, also they do not exploit the fact that at
run-time some tasks invocations that were deemed to miss
its deadline could have, indeed, finish on time. In [15],
off-line guarantees of theDynamic Windows-Constrained
Scheduling (DWCS) approach are presented. However,
��� ��-firm constraints are guaranteed over fixed windows
only and dynamic failures may occur if consecutive (slid-
ing) windows are considered. Besides, the process model is
also very restrictive as it requires all tasks to have the same
window� and�� � ��.

The Skip-Over model was introduced by Koren and
Sasha [10]. It is a particular case of��� ��-firm model. The
skip over scheduling algorithms do skip some task invoca-
tions according askip factor 	. If a task has a skip factor
of 	, it will have one invocation skipped out of	 (it can
be specified as a (� �,)-firm task). Skip-Over schedul-
ing algorithms are on-line, guarantee and low complexity
ones, but they cannot be extended to systems with arbitrary
weakly hard constraints. In [5] and [6] skips are exploited
to minimise the response time of aperiodic requests in an
EDF scheduling context.

Bernat et al. [3] introduce the notion of weakly-hard real
time constraints as a generalisation of the concept of��� ��-
firm to cover other types of missed invocation patterns (see
section 2). It is a formally defined and general conceptual
framework for specifying real time systems that can tolerate

missed deadlines. This weakly-hard real time framework
allows much richer types of temporal restrictions to be de-
fined. The initial work provided off-line schedulability tests
for fixed priority scheduled systems. An initial approach
for the joint scheduling of aperiodic work with weakly hard
schedulers, called enhanced dual priority scheduling, was
presented in [2]. It is based on the dual priority mechanism
[7], it only promoted task instances following a predefined
pattern thus making more slack for aperiodic tasks. How-
ever, the approach was very rigid as the pattern was fixed
beforehand and could not be altered if the tasks did not run
for their worst case.

The previous approaches have limitations that do not al-
low them to be used effectively, two main drawbacks are
clear: On the one hand, some of them only provide best-
effort guarantees and thus dynamic failures can occur. On
the other hand, the approaches are very restrictive requiring
process models with�� � �� or that all� are the same for
all tasks. Also, they are rigid and do not usually address the
fact that worst case estimates are very pessimistic and that it
is likely that during the normal operation of the system the
behaviour would be much better.

Our approach addresses specifically these issues. It en-
ables generic process models allowing, for instance,� � �
��, arbitrary weakly hard constraints for each task, and co-
existence of different types of tasks including periodic and
non-periodic tasks, aperiodic servers, blocking factors etc.
It also exploits the fact that tasks do not always run for their
worst case. The approach presented here encompass all pre-
vious approaches and allows to model them as particular
cases. But most importantly, is that it provide schedulability
tests that allow to obtain absolute guarantees that dynamic
failures do never occur.

2. Weakly-hard real-time systems

The tolerance to missed deadlines cannot be adequately
specified by a single parameter, for example with the per-
centage of deadlines to be met or missed (although it is
common practice to do so). This is because, in general, a re-
quirement like less than “10% of deadlines can be missed”
only represents average information over a large period of
time. For example, it may mean that one deadline is missed
every 10 task invocations or it may mean that 100 dead-
lines may be missed followed by 900 deadlines met, which
is clearly not the same. To capture this situation another
parameter describing the window of time within which the
number of deadlines must hold should be specified. Hence,
the tolerance to missed deadlines is established within a
window of �
 � consecutive invocations of the task,
which also correspond to a window of�� units of time,
where� is the period of a periodic task.

The effect of missed deadlines can be different depend-

ing on whether these deadlines are missed consecutively or
non-consecutively. For instance, in a computer controlled
system, missed deadlines result in loss of control perfor-
mance. This performance loss depends on the total number
of missed deadlines over a period of time. On the other
hand, in digital audio systems, the quality of the output pro-
duced is more sensitive to the number of consecutive missed
deadlines. If the same number of missed deadlines occur
non-consecutively, its effects may not be noticeable. Con-
sequently, it is required to introduce two classes of weakly-
hard constraints that specify whether the deadlines can be
missed consecutively or non-consecutively.

For symmetry purposes, it is also interesting to be able to
specify the number of met deadlines as opposed the number
of missed deadlines. For instance, in a certain control sys-
tems, after a deadline is missed it may be necessary to meet
at least� deadlines in a row so that the state of the system
is correctly updated. This introduces a further classification
of weakly hard constraints.

The combination of the two considerations, (a) consec-
utiveness vs. non-consecutiveness, and (b) missed vs. met
deadlines leads to four types of constraints (� � �� � � �):

� A task� “meets any� in� deadlines”, denoted
�
�
�

�
,

if, in any window of� consecutive invocations of the
task, there are at least� invocations in any order that
meet the deadline.

� A task� “meets row� in� deadlines”, denoted
�
�
�

�
,

if, in any window of� consecutive invocations of the
task, there are at least� consecutive invocations that
meet the deadline.

� A task� “misses any� in� deadlines”, denoted
�
�
�

�
,

if, in any window of� consecutive invocations of the
task, no more of� deadlines are missed.

� A task� “misses row� in� deadlines”, denoted
�
�
�

�
,

if, in any window of� consecutive invocations of the
task, it is never the case that� consecutive invocations
miss their deadline.

The term� denotes a weakly hard constraint and� the
set of all possible weakly hard constraints of these four
types (see [3] for a formal analysis). Although weakly hard
constraints with� � � could be defined, they have no use-
ful meaning. For this reason, in the rest of the paper the case
� � � is not considered.

For example, consider that a task has a
�
�
�

�
constraint,

this means that at least 50% of the deadlines have to be met,
however, it is harder to satisfy than a constraint like

�
�
��

�
(although it also means having to meet 50% of the dead-
lines) as the window of time in which the deadlines have to
be met in the former one is much shorter.

We denote by a0 a deadline missed and by a1 a dead-
line met. We can therefore characterise a task by the se-
quence of zeros and ones (we formally introduce this con-
cept and its properties in section 4). A task that has a pattern
11001101 does satisfy a

�
�
�

�
because in any 4 consecutive

symbols there are always at least 2 “1’s”, however it does
not satisfy

�
�
�

�
because there is a window of two symbols

without a1.
For example, the

�
�
�

�
constraint is equivalent to

�
���
�

�
,

also for the
�
�
�

�
constraint the parameter� is redundant,

therefore, we would write simply���. Also,
�
�
�

�
is equiv-

alent to a strongly hard (
�
�
�

�
) if �� � � � �. Clearly, the

��� ��-firm corresponds to
�
�
�

�
.

Although, other types of constraints could be also de-
fined, with these four constraints, and combinations thereof,
it is possible to represent a wide range of requirements.
More than one constraint could be associated to a task, al-
though for simplicity reasons we assume only one.

Depending on the application model, the notion of
“missed deadline” can be associated to: (1) Delayed com-
pletion: the task invocation runs until completion even
though it finishes after the deadline. (2) Abortion: the task
invocation is terminated before finishing its computation ei-
ther because it will not end its computation by the dead-
line or because another (more important) task needs the re-
source. (3) Rejection: The task is not accepted into the sys-
tem, so it does not even start to run. (4) Skip: The task
invocation is not released and the whole invocation is not
executed.

This categorisation is important because it identifies one
of the potential applications of weakly-hard constraints:re-
source adaptation. A scheduler may decide to skip some
task invocations in order to “make space” for new tasks dur-
ing a peak load. Thus effectively reducing the instantaneous
resource request (load).

3. Process model

The process model, from the implementation point of
view, consists of a set�, of periodic and non-periodic
tasks. Each task,�� is characterised by either its period
in case of periodic tasks or minimum interarrival for non-
periodic ones,��, deadline,��, worst-case execution time,
��, a weakly hard constraint,��, and a priority when it is
scheduled in panic mode ,��.

� � ��� � ���� ��� ��� ��� ���������

Each time that a task requires the processor to be exe-
cuted, it will be said that task is eitherinvoked or aninvo-
cation takes place. A system can contain periodic as well
as non periodic tasks. However it has only sense to at-
tach weakly hard constraints to periodic tasks or to sporadic

tasks that arrive regularly (called repeating tasks). Sporadic
tasks that occur rarely (called isolated tasks) should be con-
sidered strongly hard.

When an invocation of a task takes place, a state is as-
signed to it according to the following criterion:

� Non-Critical State: if the current invocation could
be missed without jeopardising the satisfaction of the
weakly hard real time constraints.

� Critical State: if the current invocation has to be met
in order to prevent missing its weakly hard real time
constraint.

The expressionsnon-critical invocation andcritical in-
vocation can be used to denote an invocation in non-critical
state and critical state respectively.

The scheduling approach therefore consists in a two level
scheduler. A normal mode scheduler for non-critical tasks,
and a scheduler for panic mode in which critical task invo-
cations can be guaranteed to finish on time.

Following the notation used by [10], we will also say that
a task invocation isred if it is in a critical state. Otherwise,
we will say that the task instance isblue. This informa-
tion will be used by the scheduler to change between two
scheduling modes.

4. �-Patterns and weakly hard constraints

The only information a scheduler for weakly hard sys-
tems uses on the history of the task (and possibly of the
possible future of the tasks) is the pattern of zeros and ones
that represent missed and met deadlines. We call these pat-
terns a�-pattern.

Definition 2 (�-pattern) A �-pattern � of a task is a se-
quence of symbols of � � �0�1� that characterises the
execution of the task. ��� � � is the length of the pattern.
���� 	 �, � � � � �. A 1 means that a task has met
its deadline, a 0 means that task has missed it. ���� is the
oldest invocation and ���� is the most recent invocation.

We will use the usual notation of regular expressions to
manipulate�-patterns, also������� is the sub string of�
from position� to �. We will also call������� a window or
subwindow of�.

For example, the�-pattern010011 has length 6. It has
3 subwindows of length 4:�0100�1001�0011�, where
0011 is the most recent subwindow.

We redefine the notion of task satisfying a weakly hard
constraint in terms of�-patterns. Clearly, a�-pattern�,
with ��� � �, satisfies a weakly hard constraint�, of win-
dow size�, and we write�
 �, if � is satisfied ineach

subwindows of length� of �. For instance, for a
�
�
�

�
con-

straint, it is satisfied if there are at least� 1’s in any subwin-
dow of the�-pattern of length of�. If the constraint is not
satisfied for a particular subwindow, then there is a dynamic
failure. The satisfiability of the other types of constraint is
defined similarly.

We are interested in a particular type of�-pattern. We
consider two on-line�-patterns that hold, at each instant�
the past of the execution the task, and an indication of the
potential future behaviour of the task.

A past �-pattern is a log of the real execution of a task.
If � is a past�-pattern then���� � � means that the task
did meet its deadline, and���� � � means that the taskdid
miss it (or was aborted/skipped). Afuture �-pattern,�, is
an estimation of the way the invocations in the future may
occur.

To distinguish between the past�-pattern and the future
�-pattern, symbols of the future�-pattern will be denoted
(borrowing the notation from [10]) byr (for red) as a syn-
onym for1 andb (for blue) as a synonym for0, whenever
the distinction is useful. Thus at a given time� the system
is characterised by the pattern� � �. For example:

time
�������������������������������������

past���� �� �
111 010 111 010

future���� �� �
rrr bbb rrr bbb rrr

At the deadline of a particular invocation it is known
whether that invocation actually met or missed the deadline.
This is the adequate time to update the past�-pattern.

It is easy to see that if� is a weakly hard constraint,�
is a�-pattern of length� � � such as�
 � and� 	 � a
symbol corresponding to the satisfiability of the next invo-
cation, then in order to test the satisfiability of� � � � � �,
only the last subwindow of��, ������	 ����	 �� needs
to be considered. The other windows of length� in � � sat-
isfied � as they are the same windows of�. This means
that for practical purposes, for a task that has a weakly-hard
constraint� of size�, the past�-pattern only needs to hold
the last� invocations of the task. For this reason, in the
rest of the paper, we consider�-patterns of length� (we
do not require that all�-patterns are of the same length, as
each task may have a different weakly hard constraint, the
length of its associated�-pattern is also different). The op-
eration of shifting the�-pattern to the left to accommodate
a new symbol� is very common and we will denote it by
LSH��� ��. For example,LSH�101�1� � 011.

The past�-pattern of a task when it is first released is
�� although no dynamic failure check should be performed
until the firm� invocations of the tasks are finished.

In order to determine how important for satisfying the
weakly hard constraint the following invocation is, we need
a metric to measure how close is the�-pattern to miss its

weakly hard constraint. This is measured by the criticality
function.

4.1. Criticality functions

We define the criticality of a�-pattern as a function that
determines the number of consecutive successive deadlines
that a�-pattern can miss without missing its weakly-hard
constraint. As we do not assume any future behaviour of
the task, we define the criticality as function of the past�-
pattern of the task only:

Definition 3 (Criticality) Given a constraint � with win-
dow size � and a �-pattern � of length ��� � �. A crit-
icality function of � is Æ����
 �� � � which has the
following properties (assume �� � are �-patterns of length
�):

1. � � � � � � 1�
 � � Æ���� � �

2. �� � � � � � 1� �
 � � Æ���� � �

3. let � � LSH���1�, then Æ���� � Æ����

4. let � � LSH���0�, then Æ���� � Æ����

Criticality is positive or zero if the constraint is satisfied,
and if it will be still satisfied in the future if all next dead-
lines are met. It is negative if it is not satisfied or, even
assuming that all future deadlines are met, if the constraint
will be not satisfied (this may happen for

�
�
�

�
constraints).

The last two properties capture the fact that when the next
deadline is met, then the criticality is at least as high as be-
fore. On the contrary, if the deadline is missed, the critical-
ity either decreases or stays the same.

If Æ���� � � for some�-pattern�, then we say that the
task is in acritical state. In this case the following task
invocations have to meet their deadlines to guarantee the
satisfiability of the weakly-hard constraint. When the task
has a dynamic failure criticality is negative.

Several criticality functions can be defined for the four
types of the weakly-hard constraints. We propose the fol-
lowing ones:

Æ

�
�

�

�
��� �

�
����� � � if

	�

��� ���� � �	�
��� ����� � otherwise

(1)

where, ����� is the rightmost point in� such that
����������� has� ones:

����� � ��

�
�� �� � � � � �

�
��	

���� � �

��
�

If the constraint is satisfied, theÆ function holds how
many deadlines can be missed in the future. If it is not sat-
isfied it actually computes the number of overrun deadlines.

The maximum value ofÆ
�
�

�

�
��� is� � �, and the mini-

mum is��. For example, for a weakly hard constraint
�
�
��

�
and a past�-pattern� � 1010101001, then����� � �

and consequentlyÆ
�

�

��

�
���=4. This can be shown graphi-

cally as:

�� �� �
1010� �� �

������

101001� �� �
3 1’s

Criticality functions forrow constraints are essentially
different. A sequence has zero tolerance when the next sym-
bol has to be 1 for guaranteeing the satisfiability of the con-
straint. For example, the sequence111 1111 000, has
tolerance 0 for a

�
�
��

�
constraint, because if the next four

deadlines are not�’s, then the constraint will not be satis-
fied: assuming that the next three deadlines were met, the
sequence becomes1111 000 111, when the next dead-
line is met, the 4 1’s in a row occur at the right end of the se-
quence, therefore satisfying the constraint. If any of the last
four deadlines was not met, then a dynamic failure would
inevitably occur. Thus,

Æ

�
�

�

�
��� �

�
������ � if ����� � �
������ �	 ���� ������ ��� otherwise

(2)
where����� is the left index of the rightmost sequence��

in � or :

����� �

�
���� � ������	 �� �� � ��� if �� 	 �
� otherwise

where���� �� is the number of consecutive symbols� 	 �
that there are at the right end of the sequence.

���� �� � ���� � ���� �	 ����� � ���

and������ �� is the rightmost subsequence of� of length
�� �����:

������ �� � ���� �	 ����� 	 �����

This criticality function can be explained as follows. When
there are only� symbols at the left of the rightmost�� pat-
tern, then the criticality is zero. In the worst case� in-
vocations need to be satisfied in order to have� consec-
utive 1’s in the�-pattern. The criticality is, actually, the
number of deadlines that can be missed until the previ-
ous situation arises. For example, for a weakly hard con-
straint

�
�
��

�
and a past�-pattern� � 0100111011, then

����� � ��� �� and consequentlyÆ
�

�

��

�
��� � �. If the

past�-pattern is� � 1100101010, then���� �� � �

and consequentlyÆ
�

�

��

�
��� � ��. In this last case� sat-

isfies
�
�
��

�
but its criticality is negative since a future dy-

namic failure cannot be avoided. When there are less than
� � � symbols to the left of�� then a dynamic failure is
inevitable. The second expression is always negative and
represents by how much the constraint was missed. For ex-

ample,Æ
�
�

�

�
�0111000� � �� because a dynamic failure

will occur and it will last for 1 invocation.
As

�
�
�

�
is equivalent to

�
���
�

�
, the same criticality

function for theany constraint can be used.
For the miss row constraint, a criticality function is de-

fined as the number of consecutive zeros that can be toler-
ated:

Æ
	������ � �� ���� �� (3)

This function decreases the tolerance as long as dead-
lines are missed in a row. When one single deadline is met,
the criticality value reaches the maximum value�.

It is straightforward to see that the functions defined here
are criticality functions. The scheduling framework that is
described later in section 5 uses this notion of criticality to
schedule tasks.

4.2. Minimal future �-patterns

We now introduce a characterisation of the potential be-
haviour of the task invocations in the future. Let� be a
weakly hard constraint of size�, and let� be a past�-
pattern of a task� of length�.

Definition 4 (Guaranteed future �-pattern) A future �-
pattern � is a guaranteed future �-pattern for a weakly-
hard constraint � if for all possible past �-patterns that
have criticality greater than zero (Æ��� � �), the combined
�-pattern � � � �� does not have a dynamic failure, �
 �.

A guaranteed future�-pattern captures the notion of a
future behaviour of the task that is compatible with any pos-
sible past behaviour of that task, here compatible means that
it will not generate a dynamic failure. For instance, the�-
pattern�� is a guaranteed future�-pattern for any weakly-
hard constraint.

Among all possible guaranteed future�-patterns, we
shall be interested in those that have the minimum number
of 1’s.

Definition 5 (Minimal future �-pattern) A guaranteed fu-
ture �-pattern � is a minimal future �-pattern if when any
single 1 in � is switched to a 0, then the pattern is no longer
a guaranteed future �-pattern

Minimal �-patterns represent a possible future behaviour
with a minimum number of invocation deadlines to meet.
Among the multiple minimal future�-patterns we are inter-
ested in the ones that allow a schedulability analysis to be
performed.

The combination of the criticality function of the past�-
patterns and the notion of minimal future�-pattern are the
key for the scheduling approach. The criticality function is
used to determine when a task is critical, the minimal future
�-pattern can then be used to provide a guaranteed schedu-
lability test. For this purpose we are interested in defining
a set of minimal future�-patterns for each of the weakly-
hard constraints so that response-time based schedulability
tests can be defined for them. Among the possible minimal
future�-patterns, the following ones are adequate for the
schedulability analysis described in section 6.

Definition 6 For a constraint � �
�
�
�

�
, a minimal future

�-pattern, ���, is given by:

��� �

�� �� �
rr..r

���� �� �
bb..b

�� �� �
rr..r

���� �� �
bb..b ���

Similarly, for the
�
�
�

�
constraint:

Definition 7 For a constraint � �
�
�
�

�
, a minimal future

�-pattern, ���, is given by:

��� �

�� �� �
rr..r

����
�� �� �
bb..b

�� �� �
rr..r

����
�� �� �
bb..b ���

As themiss any constraint is equivalent to theany con-
straint, its minimal future�-pattern is also equivalent. Fi-
nally, for the��� constraint:

Definition 8 For a constraint � � ���, a minimal future
�-pattern, ���, is given by:

��� � r

���� �� �
bb..br

���� �� �
bb..b ���

It is straightforward to prove that the�-patterns defined
above are guaranteed�-patterns.

4.3. Critical state invocations

In a weakly hard-scheduled system, every time a task is
released, the scheduler should need to determine whether
the invocation is in a critical state. The invocation of a task
is in a critical state if the criticality function of its past�-
pattern is zero. Note that because of the way the criticality
function is defined, to determine whether a particular in-
vocation of a task with a constraint� of length� is criti-
cal it is only necessary to examine the past�-pattern. The
following theorem gives the condition to guarantee that no
dynamic failures will occur.

Theorem 1 Any weakly-hard scheduling algorithm that
guarantees the deadline of an invocation when its criticality
is zero does never produce a dynamic failure.

Proof: Immediate from property 3 of the definition of
criticality function.

The theorem states that if there is a mechanism by which
the next release of a task can be guaranteed to finish by its
deadline when a task has zero criticality, then no dynamic
failure can occur. There are two key points to consider: No
constraint is put in the way that tasks are scheduled, only
that a task has to be guaranteed to finish by its deadline.
Secondly, only the past�-pattern of the last� invocations
needs to be considered to determine whether the next invo-
cation is in a critical state.

5. Scheduling with weakly hard Constraints

After having introduced the theory behind on-line
weakly-hard schedulers we can now present a scheduling
framework that is flexible, dynamic and that guarantees that
no dynamic failure ever occurs.

A guaranteed scheduler must perform a well-known be-
haviour leading to avoid any dynamic failure. However,
when weakly hard constraints are satisfied, the scheduler
must allow tasks to be scheduled under any arbitrary dis-
cipline in order to maximise a certain criterion of perfor-
mance of the specific system. For this purpose we present
a Bi-Modal Scheduler (BMS). It has two operating modes:
Panic mode and Normal mode.

� When a taski is in panic mode it is run under a fixed
priority mechanism with a priority�� strictly higher
than any other task which is not in panic mode. In
this mode the maximum interference a task may suffer
from other tasks can be precisely measured and there-
fore an schedulability test can be defined (See sec. 6).

� When a task is in normal mode it can be scheduled
according to any arbitrary discipline, possibly a best-
effort one. Scheduling disciplines based on minimis-
ing the response time of tasks or a discipline to avoid
entering in panic mode or specific-system disciplines
can be applied. For example the simple EDF may
suffice, other approaches that are fairer when dead-
lines are missed, or specialised scheduling approaches
based on the notion of criticality can be defined. In
this paper we do not investigate normal mode sched-
ulers any further. This is the subject of a future work.

The scheduler has to change to panic mode when any
weakly hard constraint is in danger of being missed. This
can be done as soon as a task with zero criticality is invoked.
However, it is possible to delay such transition as there is

slack in the system. A critical task� will be scheduled un-
der normal mode until a time�, in what follows denoted� �,
in which if it is not put into panic mode there is the risk of
missing the deadline. The former approach is calledimme-
diate panic mode, whereas the latter is calleddelayed panic
mode. The scheduler has to return to normal mode, as soon
as possible but only when there is no risk to miss a weakly
hard constraint. Obviously, non-critical invocations will not
produce a change to panic mode of the scheduler, because
they are not close to generate a dynamic failure.

The scheduling framework can be summarised as fol-
lows:

� There are two scheduling policies defined, a panic
mode scheduler and a normal mode scheduler. The
panic mode is implemented as a fixed priority mecha-
nism with priorities strictly higher than any task sched-
uled under the normal mode scheduler. No restriction
is placed on the normal mode scheduler.

� Whenever a task is invoked, its criticality is computed.
If criticality is zero then task invocation may be in
panic mode. Otherwise it is in normal mode.

� The transition from normal mode to panic mode is sim-
ply implemented as a priority promotion. Inimmedi-
ate panic mode a critical task invocation is promoted
to panic mode immediately when it is released. in
delayed panic mode a critical task invocation is only
promoted to panic mode after a fixed time has elapsed
since it was released. We use the dual priority mech-
anism [4] to achieve that. Other slack management
techniques could be also used for this purpose.

� Whenever a task finishes (or at the deadline if the task
has not finished by the deadline) the past�-pattern is
updated accordingly.

� If there are no task in panic mode then the scheduler
may choose a ready task to execute according to any
scheduling policy. We do not impose the way to sched-
ule tasks in non-panic mode. Although, we provide
some criticality based ones later.

Figure 1 shows an example of the interaction of the two
schedulers. The first invocation is considered non-critical
as its criticality is greater than 0. Therefore, it is scheduled
in normal mode and it may or may not meet its deadline de-
pending on the scheduling discipline used in normal mode.
Assuming that the deadline is missed, the second invocation
is critical because its criticality has dropped to zero. Under
the delayed panic mode, the tasks starts running under nor-
mal mode but as it has not finished by��, it is promoted to
panic mode where it is guaranteed that it will finish by the
deadline and therefore a dynamic failure is prevented. The

release

Normal
Mode

Panic
Mode

Li

promotion to
 panic mode release

t

Criticality >0 Criticality =0

Figure 1. Example of delayed panic mode.

computation of�� and the schedulability test is developed
in the following section.

6. Schedulability analysis

In this section, a schedulabity analysis is performed to
guarantee that task invocations in panic mode will always
meet its deadline.

When a task is in panic mode, it may only suffer in-
terference from other invocations which are also in panic
mode. In fact, as tasks are scheduled using fixed priorities,
each taski has assigned a fixed priority,��, for panic mode
and can only suffer interference from other task invocations
which are also in panic mode and with higher priority. With
this scenario, the worst case of requirements that panic in-
vocations can produce must be determined.

Lemma 1 A task invocation in panic mode may receive, at
most, interference from the red invocations of the minimal
future �-pattern of higher priority tasks.

Proof : From the definition of minimal future�-pattern,
all blue invocations correspond to non-panic releases as the
criticality function at the release of the blue invocation is
strictly greater than zero. Only red invocations may become
panic, and therefore these are the only ones that can produce
interference on other (lower priority) panic invocations.

Lemma 2 The worst case response time for a task invoca-
tion in panic mode happens when it is simultaneously re-
leased with all higher priority tasks in panic mode and all
these higher priority tasks have the minimum criticality.

Proof: The worst case response time of a task will occur
when it will suffer the maximum interference from higher
priority tasks. When all tasks with higher priority in panic
mode are released simultaneously, it will be preempted at
most for each of their red releases in their minimal future
�-pattern. Moreover, because of the way the minimal future
�-patterns are defined, they correspond to the conditions of
multiframe tasks [11], for which the definition of critical
instant is equivalent.

Lemma 3 The worst case interference a task �� with
weakly-hard constraint �� and minimal future �-pattern ���

may produce on lower priority tasks in any window of time
of length �, denoted by ����, is given by:

 ���� �

�
�

��

�

���

���� �����

Proof : From theorem 1, the task only produces interfer-
ence from its red (���� ��� � 1) invocations. The maximum
interference is obtained when the task is released simulta-
neously with all higher priority tasks (Lemma 3), therefore
from the high priority task point of view, it will produce at
most�� units of interference every period that this task is
red.

Lemma 4 The worst case response time, denoted by !�,
of a task invocation in panic mode is the smallest !�
 �
which is a solution to the fixed point equation:

!� � �� 	

�hp���

 �!��

wherehp��� denotes the set of tasks of higher priority than
task�� when in panic mode.
!� can be computed with a recurrence formula [1]:! �

� �
�, !�
�� � �� 	

	
�hp��� �!

�
� �. The iteration stops

when!�
�� � !�� or when!��
 ��.

Theorem 2 For a system � of weakly hard real time tasks
scheduled according to the scheme described in section 5,
all the weakly hard real time constraints can be met (and
therefore no dynamic failure can occur) in panic mode if

�� 	 � !� � ��

Proof: The criticality function guarantees that a task is in
normal mode only when it does satisfy its weakly hard con-
straint. Therefore a task in normal mode does never have a
dynamic failure. If it does not produce a dynamic failure in
panic mode (theorem 1), then no dynamic failure can occur.

Corollary 1 A system � does never produce a dynamic
failure if critical invocations are promoted to panic mode
at least !� slots before their deadline (�� � �� �!�).

This final corollary gives an interesting result. Indepen-
dently on how tasks are scheduled in normal mode, if they
are promoted to panic mode with enough time to complete
when their criticality is zero and a schedulability test exists
in panic mode, then no dynamic failure can ever occur.

Also note that the guarantee is based on the ability of
computing the maximum interference a task may receive

Table 1. Example Task set. Total Utilisation �
���, but weakly hard schedulable under BMS

Task �� �� �� �� ��
1 45 22 45

�
�
�

�
1 (highest)

2 70 22 70
�
�
�

�
2

3 245 54 245
�
�
�

�
3

4 1200 198 1200
�
�
�

�
4 (lowest)

from higher priority tasks. This has been done with an ex-
tension of response time analysis techniques. This formu-
lation can be easily extended to include other factors like
blocking factors due to the operation of a protocol for shar-
ing resources like the priority ceiling protocol [13], release
jitter effects, kernel overheads [1], etc.

The examination of Lemma 3 has an additional impor-
tant implication. For weakly hard systems the load at the
critical instant is significantly lowered. Thus systems that
with traditional schedulability analysis techniques would be
found to be unschedulable they can be weakly hard schedu-
lable. Most importantly, experimental evaluation suggests
that although the schedulability analysis indicates that some
deadlines can be missed, the pessimism in the WCET anal-
ysis leads to all task deadlines actually being met.

Panic invocations are scheduled under a fixed priority
discipline. Therefore, a priority must be assigned to panic
invocations of each task. It is easy to find counterexamples
where deadline monotonic or rate monotonic assignments
are not optimal when tasks have weakly hard constraints.
An optimal priority assignment can be found using the par-
tition method. The details can be found in [3]

7. Evaluation

In this section we present two examples of the applica-
bility of weakly hard constraints: an illustration of the re-
duction of resource requests at peak loads and a comparison
of the number of dynamic failures of other approaches.

7.1. Resource requests

Consider the system shown in table 1. It is not strongly
hard schedulable because it has a total utilization factor of
���. However, it meets the conditions of theorem 2, it is
schedulable under a BMS scheduler.

Figure?? shows the trace of the pending load (number
of requirements pending considering maximum execution
time of each task) if an EDF scheduling algorithm in nor-
mal mode is used (assume�� � �). It can be noted that load
has a peak at� � � but later pending load decreases grad-
ually. Some high priority tasks miss their deadlines, thus

0

50

100

150

200

250

300

350

0 200 400 600 800
time

Pending Load Missed Deadline

Figure 2. Pending load and distribution of
missed deadlines labelfig:pendingload

effectively leaving more resources available. After the ini-
tial busy period, the number of missed deadlines decreases
significantly and its distribution is more sparse.

7.2. Comparison

Previous attempts on weakly hard real time systems were
focused on application-specific scenarios which makes
them difficult to apply to different contexts. Skip-over
scheduler are guaranteed, online schedulers but the tempo-
ral constraints that they can manage are very restrictive. On
the other hand,��� ��-firm systems are based on best-effort
schedulers and no guarantee can be obtained. We compare
our BMS scheduler with the DWCS approach for (�, �)-
firm constraints [15].

A set of one thousand systems of 20 tasks each were ran-
domly generated. Task periods were generated uniformity
distributed between 10 and 500. Total utilisation factor was
set to 1.4 for each system, but average execution times were
randomly decreased to achieve an average utilisation fac-
tor varying between 0.8 and 1.4 (when average utilisation
factor is 1.4, average execution time was just equal to the
maximum execution time). Weakly hard constrains were in-
troduced to reduce the weakly hard utilisation factor down
to 0.7. Task sets that were not schedulable (theorem 2) were
rejected. Only constraints ofany type were chosen because
they are the only constraints supported by DWCS.

Simulations were carried for at least 1000 invocations of
the task with the longest period. Execution times were gen-
erated assuming an exponential distribution. Figure 2 shows
the average number of dynamic failures that occur for each
group of utilisation factors for the DWCS, simple EDF and
for BMS with EDF as the scheduler in normal mode. Al-
though under the “fixed window” assumption of the DWCS
approach there should not be dynamic failures, in the more

-5

0

5

10

15

20

25

0.8 0.9 1 1.1 1.2 1.3 1.4
Average Utilization Factor

D
yn

am
ic

 F
ai

lu
re

s
(x

1
0

00
)

DWCS EDF BMS

Figure 3. Comparison of the number of dy-
namic failures for DWCS, EDF and BMS

restricted model of sliding windows several dynamic fail-
ures do occur. Moreover there are even more dynamic fail-
ures than with a simple EDF approach. As expected, no
dynamic failure takes place if systems are schedule under
the BMS algorithm.

Figure 3 shows the performance of each scheduling al-
gorithm, based on the effective utilisation factor. The effec-
tive utilisation factor is defined as the processor time (per
unit) used by invocations that meet their deadlines. When
load is low, deadline based algorithms (DWCS is a pseudo-
deadline based one) achieve the maximum effective utilisa-
tion factor (best-effort algorithms try to optimise the max-
imum average effective utilisation factor). However, when
load increases deadline based algorithms performance starts
to decrease because of the domino effect. Although BMS
does not perform as well under low loads as the two other
approaches, it achieves a consistent high load even for high
total utilisation factors. The low performance may be due to
the underlying EDF scheduler used in normal mode. Other
schedulers in normal mode may produce better results. This
is the topic of current ongoing research.

8. Conclusions

Future real-time systems require mechanisms to specify
in a clear, predictable, and bounded way that some dead-
lines can be missed [3]. We use weakly-hard constraints to
specify such bounds which are a generalisation of the con-
cept of ��� ���firm deadlines. Also, efficient and robust
scheduling techniques that address weakly hard real-time
systems should be available. Previous attempts have not
been satisfactory as they are not guaranteed, too constrained
or applicable to reduced application contexts only.

In this paper, a general scheduling framework, called

0

0.2

0.4

0.6

0.8

1

0.98 1 1.1 1.17 1.24 1.33 1.4
Average Utilization Factor

E
ff

ec
ti

ve
 U

ti
lis

at
io

n
F

ac
to

r

EDF DWCS BMS

Figure 4. Effective utilisation factors for EDF,
DWCS and BMS with EDF as the scheduler in
normal mode.

BMS, is proposed for weakly hard real time systems. It
is based on a simple and robust mechanism that has two
modes of operation. Whenever there is the risk that a task
may not satisfy its weakly-hard constraint the scheduler en-
ters in panic mode for which schedulability tests exists that
guarantee that deadlines will be always met. When there is
no such a risk, a generic scheduler can be used. Due to the
inherent pessimism of the analysis it is very likely that the
scheduler would rarely switch to panic mode.

With weakly hard constraints the resource requirements
around the critical instant are lowered, thus allowing sys-
tems with a potential strongly hard utilisation greater than
100% to be scheduled with weakly-hard constraints. Due
to the pessimism in the WCET analysis it is expected that
most deadlines are indeed met.

References

[1] N. Audsley, A. Burns, M. Richardson, and A. J. Wellings.
Applying new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

[2] G. Bernat and A. Burns. Combining (n m)-hard deadlines
with dual priority scheduling. In18th IEEE Real-Time sys-
tems symposium. RTSS San Francisco, CA, December 1997.

[3] G. Bernat, A. Burns, and A. Llamos´ı. Weakly-hard real-time
systems.IEEE Transactions on Computers, 50(4):308–321,
April 2001.

[4] A. Burns and A. Welligns. Dual priority assignment: A
practical method for increasing processor utilisation. Tech-
nical report, Department of Computer Science, University
of York, 1993.

[5] G. Buttazzo and M. Caccamo. Minimizing aperiodic re-
sponse times in a firm real-time environment.IEEE Transac-
tions on Software Engineering, 25(1):22–32, January 1999.

[6] M. Caccamo and G. Buttazzo. Exploiting skips in periodic
tasks for enhancing aperiodic responsiveness. In17th IEEE
Real-Time Systems Symposium. San Francisco, CA., pages
330–339, December 1997.

[7] R. Davis and A. Wellings. Dual priority scheduling. Inproc.
16th IEEE Real-Time Systems Symposium, pages 100–109,
December 1995.

[8] M. Hamdaoui and P. Ramanathan. A dynamic priority as-
signment technique for streams with��� ��-firm deadlines.
IEEE Transactions on Computers, 44(12):1443–1451, De-
cember 1995.

[9] M. Hamdaoui and P. Ramanathan. Evaluating dynamic fail-
ure probability for streams with (�, �)-firm deadlines.IEEE
Transactions on Computers, 46(12):1325–1337, December
1997.

[10] G. Koren and D. Shasha. Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips. Inproc. 16th
IEEE Real-Time Systems Symposium, pages 110–117, Pisa,
Italy, December 1995.

[11] A. Mok and D. Chen. A multiframe model for real-time
tasks. Inproc. 17th IEEE Real-Time Systems Symposium,
December 1996.

[12] G. Quan and X. Hu. Enhanced fixed-priority scheduling
with (�, �)-firm guarantee. In12th IEEE Euromicro Con-
ference on Real-Time Systems, Sweden, June 2000.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization.IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

[14] H. F. Wedde, J. A. Lind, and G. Segbert. Distribuited real-
time task monitoring in the safety-critical system melody.
In 11th IEEE Euromicro Conference on Real-Time Systems,
pages 158–165, York. UK, June 1999.

[15] R. West and C. Poellabauer. An optimal, on-line window-
constrained scheduler for real-time heterogeneous activities.
Technical Report GIT-CC-99-11, College of Computing,
Georgia Institute of Technology, Atlanta, 1999.

[16] R. West and C. Poellabauer. Analysis of a window-
constrained scheduler for real-time and best-effort packet
streams. In21st IEEE Real-Time Systems Symposium.
Florida. USA, November 2000.

