Home ] Up ] Contenidos ]

El Problema 16

 

Artículos sobre la cantidad de ciclos límite en sistemas planares de dimensión n

Los problemas propuestos por Hilbert en 1900

Mathematical Problems (lecture derived on the International Congress of Mathematicians, París, 1900)
D. Hilbert,
Bulletin of the AMS, 37, 4, pp. 407-436 (Reprinted from Bull. Amer. Math. Soc. 8, July 1902, pp. 437–479. Originally published as Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematike-Congresszu, Paris 1900, Gött. Nachr.1900, 253-297, Vandenhoeck & Ruprecht, Göttingen. Translated for the Bulletin, with the author’s permission, by Dr. Mary Winston, Newson,1902.)

Centennial history of Hilbert's 16th problem
Y. Ilyashenko
Bull. (New series) of the A.M.S., 39, 3, 2002, pp. 301-354.

A Sideways Look at Hilbert’s Twenty-three Problems of 1900
Ivor Grattan-Guinness
Notices of the A.M.S., 47, 7, pp. 757-757.

 

Un artículo tutorial del 2003

Hilbert's 16 problem and bifurcations of planar polynomial vector fields (review)
J. Li
International Journal of Bifurcation and Chaos, 13, 1, 2003, pp. 47-106

 

Otros artículos sobre ciclos múltiples (por orden de publicación)

(5 ciclos límite) On certain generalization of Bautin's theorem
H. Zolakek
Nonlinearity, 7, 1994, pp. 273-279.

Variational approach to a class of nonlinear oscillators with several limit cycles
M. C. Depassier, J. Mura
Physical Review E, 64, 2001, pp. 056217-1 a 056217-6

(23 ciclos límite) Investigations of bifurcations of limit cycles in Z2-equivalent planar vector fields of degree 5
J. Li, H. S. Y. Chan, K. W. Chung
International Journal of Bifurcation and Chaos, 12, 10, 2002, pp. 2137-2157.

(14 ciclos límite) Fourteen limit cycles in a cubic Hamiltonian system with nine-order perturbed term
M. Tang, X. Hong
Chaos, Solitons and Fractals, 14, 2002, pp.1361–1369.

On the Limit Cycles of Quadratic Differential Systems
X. Zhang
Acta Mathematica Sinica, English Series, 18, 4, 2002, pp. 803–816.

Abelian Integrals and Limit Cycles in Polynomial Dynamical Systems
Valery A. Gaiko
Nonlinear Phenomena in Complex Systems, 6, 1, 2003, pp. 577-581.

Number and amplitude of limit cycles emerging from topologically equivalent perturbed centers
J. L. López, R. López-Ruiz
Chaos, Solitons and Fractals, 17, 2003, pp. 135–143.

(5 ciclos límite) The same distribution of limit cycles in five perturbed cubic Hamiltonian systems
Z.Liu, Z. Yang, T. Jiang
International Journal of Bifurcation and Chaos, 13, 1, 2003, pp. 243-249.

On the second part of Hilbert’s 16th problem
E. Oxenhielm,
Nonlinear Analysis, Received 3 July 2003; accepted 3 October 2003.

(de Wikipedia) Elin Oxenhielm es una estudiante de matemáticas sueca que en diciembre de 2003 afirmó erróneamente haber resuelto el problema 16 de Hilbert. Su artículo había sido aceptado en la revista Nonlinear Analysis, pero después de otras revisiones la aceptación fue rechazada. Un anuncio adicional del Editor en Jefe V. Lakshmikantham dice: "This paper has been withdrawn from the Articles in Press section of ScienceDirect. Further referee reports, which provide specific details, show that the proof offered does not stand on a rigorous foundation and that further work is necessary." Más información:

(10 ciclos límite) A study on the existence of limitcycles of a planar system with third-degree polynomials
M. Han, Y. Lin, P. Yu
International Journal of Bifurcation and Chaos, 14, 1, 2004, pp. 41-60.

(11 ciclos límite) On the number and distribution of limit cycles in a cubic system
M. Han, T. Zhang, H. Zang.
International Journal of Bifurcation and Chaos, 14, 12, 2004, pp. 4285-4292.

(23 ciclos límite) On the control of parameters of distributions of limit cycles for a Z2-equivariant perturbed planar hamitonian polynomial vectro field
J. Li, H. Zhou
International Journal of Bifurcation and Chaos, 15, 1, 2005, pp. 137–155.

(12 ciclos límite) Twelve limit cycles in a cubic case of the 16th Hilbert problem
P. Yu, M. Han
International Journal of Bifurcation and Chaos, 15, 7, 2005 pp. 2191–2205.

(35 ciclos límite) Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation
S. Wang, P. Yu
Chaos, Solitons and Fractals, 26, 2005, pp. 1317–1335.

(11 ciclos límite) The number and distributions of limit cycles for a class of cubic near-Hamiltonian systems
H. Zang, T. Zhang, M. Han
J. Math. Anal. Appl., 316, 2006, pp. 679–696.

(50 ciclos límite) Bifurcations of limit cycles in a Z2-equivariant planar polynomial vector field of degree 7
J. Li, M. Zhang, S. Li
International Journal of Bifurcation and Chaos, 16,  4, 2006, pp. 925–943

(2 ciclos límite) A unified proof on the weak Hilbert 16th problem for n = 2
F. Chena, C. Lia, J. Llibreb, Z. Zhanga
J. Differential Equations, 221, 2006, pp. 309 – 342.

(13 ciclos límite) Thirteen limit cycles for a class of Hamiltonian systems under seven-order perturbed terms
G. Tigan
Chaos, Solitons and Fractals, 31, 2007, pp. 480–488.

(80 ciclos límite) Bifurcation of Limit Cycles in Z-equivariant vector fields of degree 9
S. Wang, P. Yu, J. Li
International Journal of Bifurcation and Chaos, 16, 8, 2006, pp. 2309–2324.

(n(n+1)/2-1 ciclos límite) On the Number Of Limit Cycles in Near-Hamiltonian Polynomial Systems
M. Han, G. Chen, C. J. Sun,
International Journal of Bifurcation and Chaos, 17, 6, 2007, pp. 2033–2047.

En un sistema Hamiltoniano con perturbaciones polinomiales de orden n puede haber a lo sumo n(n+1)/2-1 ciclos límites alrededor de un centro.

Por consulta o comentarios sobre este sitio, envíe un mensaje a epaolini@uns.edu.ar
Última modificación: Octubre 24, 2007